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1 Foreword 
This book is the introductory document of the OWLIM’s set of user documents. OWLIM is the 
Ontotexts’s database system for storing and making requests against structured data. It is packaged 
as a Storage and Inference Layer (SAIL) for the Sesame RDF framework. OWLIM is based on TRREE – 
a native RDF database and rule-entailment engine. If you need a quick overview of OWLIM or a 
download link to its latest releases, please visit OWLIM’s product page at 
http://www.ontotext.com/owlim/index.html.  

At present, OWLIM has become the undisputed leader among structured data repositories for its 
unsurpassed processing capacity (currently it supports non-trivial OWL inference against 3 Billion 
triples and successful loading of 12 billion triples!) and speed (like loading and materializing LUBM(50) 
within 42 sec. on a desktop machine, delivering unmatched throughput of 161 KSt./sec).  

{няколко думи за историята на OWLIM тук} 

The purpose of this book is to provide you with a conceptual overview of OWLIM – that is, with some 
general information about its structure and functioning – as well as with the instructions needed to 
install the system. In addition to that, a good portion of this document is geared towards introducing 
the basics of the Semantic Web1, the knowledge of which is an indispensable prerequisite for the 
successful adoption of OWLIM (or any other structured data repository, for that matter). 

 

                                                

1 For a detailed explanation of the Semantic Web, refer to http://www.w3.org/2001/sw/ 
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2 About This Document 
This chapter briefly explains the purpose and the scope of this document, its place in the OWLIM user 
documentation set, and provides some suggestions for efficient use. 

2.1 OWLIM User Documentation – Overview 

OWLIM comes in two editions – SwiftOWLIM and BigOWLIM, and the user documentation set for each 
of them comprises several documents. Except for the current document, which is common for both 
editions, all other documents are edition-specific. (See Table 1 - The OWLIM User Documentation 
Set.) 

 

OWLIM 
Editions  

Swift-
OWLIM 
 

 Big-
OWLIM 
 

 

Document 
Type Document Description  

  OWLIM Primer 

                          

tutorial This document. See “Purpose, 
Intended Readership and 
Overview, of This 
Document”. 

 SwiftOWLIM 
Fact Sheet 

  BigOWLIM 
Fact Sheet 

reference An excerpt from the User Guide 
for the respective OWLIM edition 
with the following factual 
information: succinct product 
description and installation 
instructions, licensing, release 
notes, requirements, supported 
standards,  and download and 
support links.  

  SwiftOWLIM 
User Guide 

  BigOWLIM 
User Guide 

manual Provides in-depth explanation of 
the respective OWLIM edition 
from the user perspective. 
Features detailed installation, 
configuration, customization and 
usage instructions.  


  D

oc
u

m
en

t 
Ti

tl
es

  
 

  SwiftOWLIM 
Tests and 
Benchmarks 

  BigOWLIM 
Tests and 
Benchmarks 

reference Describes the tests with which 
the respective OWLIM edition is 
being distributed. 

Table 1 - The OWLIM User Documentation Set 
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In this document, the SwiftOWLIM User Guide and the BigOWLIM User Guide are referred to 
collectively as “OWLIM User Guides” in cases where it is not necessary to distibguish between the 
editions of OWLIM.  

2.2 Purpose, Intended Readership and Overview, of This Document 

This document is designed for database specialists who need to implement the OWLIM semantic 
database in an information retrieval system or to use OWLIM as a stand-alone application for storing 
and making requests against structured data. The document is also useful for system administrators 
who need to support and maintain an OWLIM-based system but have no prior knowledge of OWLIM. 

This document presumes that the reader is a database specialist but not an expert in semantic 
database systems, semantic information retrieval, or Semantic Web. He is expected to be able to draw 
from his knowledge of relational databases; the required minimum of Semantic Web concepts and 
related information is provided in the course of this book. 

Understanding of XML would be beneficial as well, as it is the most widely used metadata description 
language of the Web today and, for this reason, standardly used as a tool for illustrating the Semantic 
Web concepts in the referencing literature, this book included. 

The purpose of this document is three-fold: 

1. To deliver a general overview of the OWLIM system and to make you acquainted with its 
architecture and operational logic. 

2. To introduce the Semantic Web and its concepts and to provide enough usable information so 
that you could start using your OWLIM system practically unimpeded in case your Semantic 
Web knowledge is currently limited. 

3. To provide you with instructions on how to install OWLIM. 

The first part of this document, “Background Knowledge,” provides, in succinct form, the general 
conceptual information about the Semantic Web. Because there is a great deal of information about 
the Semantic Web in existence both over the Internet and in print, the topics in this section basically 
serve to check the required knowledge rather than go into details about the concepts being explained. 
This is by necessity so because an in-depth discussion on these topics goes beyond the scope of this 
product-related user document. However, on every subject, ample references are provided, so you 
could explore a subject further if you feel the need to do so. 

The second and the third parts deal with OWLIM itself. The second part, “Introduction to OWLIM” 
gives you the basic information about OWLIM. It creates the necessary foundation for your OWLIM 
knowledge so you could later get down to the specifics in the User Guide of your chosen OWLIM 
edition and do your actual work with it.  

Once you know what OWLIM is about and how it operates, part three, “Installation and Configuration 
Overview” explains the installation package and procedure and shows you how to customize your 
OWLIM configuration. Though this part already deals with OWLIM’s specifics, it is included here and 
not in the User Guides because the installation procedure and configuration options are common for 
all editions of OWLIM. 
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2.3 How to Use This Document? 

Reading the first part, “Background Knowledge” is optional depending on how familiar the Semantic 
Web concepts are to you. If you are new to the Semantic Web, it is recommended to read this entire 
section first and preferably check as many of the references as your time permits. If you have a 
certain level of knowledge however, you might want to read the part selectively, just perusing what 
you already know and paying more attention to the content that is new to you. And, of course, if you 
consider yourself knowledgeable about the Semantic Web, you can skip the entire first part. 

The second part, “Introduction to OWLIM” is a real “must-read”: it should be read wall-to-wall (all of 
it) and sequentially (from the beginning to the end) without skipping any topics. You are expected to 
cover this part before attempting to actually do anything with OWLIM. 

Reading the third part, “Installation and Configuration Overview”, becomes necessary when you 
decide to actually install OWLIM on your system, but reading it anyway can be a useful addition to 
your OWLIM education.  

The following formatting conventions are used in this book: 

 Code examples are listed in typewriter-like font. 

 The first occurrence of a term that is explained in the Glossary at the end of this book is 
hyperlinked to its Glossary entry and is formatted like this.  

 Other important terms, when first introduced, may be written in italics. 

 Formulas, too, are always in italics. 

 References to the list of the referred literature are given in square brackets, e.g. [3] means 
“Refer to document #3 in the References section”. 

2.4 Credits and Licensing 

OWLIM benefits from the scalable architecture and numerous “basic” components of Sesame. 

The development of OWLIM is partly supported by SEKT, TAO, TripCom, LarKC, and 
other FP6 and FP7 European research projects. 

The this document products discussed in it are copyrighted and subject to licensing as follows: 

 © Copyright 2005-2009, Ontotext Lab, Sirma Group Corp. 
135 Tsarigradsko Shosse, Sofia 1784, Bulgaria, http://www.ontotext.com. 

 SwiftOWLIM is a free software, available under the GNU Lesser General Public License 
(LGPL) version 2.1. One can redistribute and/or modify it freely under the terms of this 
license. 

 Licensing of the third-party libraries:  

 Sesame, © Copyright Aduna b.v. Sesame, is an open-source library, available under  
the LGPL. 

 TRREE, © Copyright Ontotext Lab, Sirma Group Corp., is proprietary software owned 
by Ontotext Lab. SwiftTRREE v2.9.1 is licensed for use free of charge as an integral 
part of SwiftOWLIM v2.9.1. Re-distribution of TRREE in any form, except as part of 
the original SwiftOWLIM distribution package, is strictly prohibited. Any form of 
modification or reverse-engineering of TRREE is prohibited. SwiftTRREE is distributed 
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together with SwiftOWLIM without warranty of any kind including, but not limited to 
suitability for any particular purpose. 

 All other trademarks mentioned in this document, if any, belong to their respective 
owners. 

Full licensing information is available at http://www.ontotext.com/owlim/licence.html, as well as in the 
licence.txt file in the main folder in the distribution package. 
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3 Background Knowledge 
The background knowledge you need to be able to use OWLIM comprises some basic Semantic Web 
concepts and general understanding of the Sesame framework. This chapter provides introductions to 
both. 

3.1 Introduction to Semantic Web Knowledge Management Concepts 

The Semantic Web is about presenting web-based data in machine-readable form so it could be 
further processed and eventually presented to the user as some relevant and useful information with 
as little human intervention in the process as possible. Retrieved in that way, this information content 
may even include some knowledge that has not been explicitly available prior to that processing. 

The ambition of the Semantic Web is to solve the most problematic issues that come with the spread 
of the “standard” non-semantic (HTML-based or similar) Web and which result in high level of human 
effort involved when it comes to finding and retrieving precise information in usable form. For 
example, automated searches nowadays while being quite fast still have a lot to want in terms of 
relevance and accuracy: of the thousands of matches typically returned, only a few point to truly 
relevant content and some of this content may be berried deeply in the subsequent pages of the 
results. All these issues highly reduce the value of the information received and of automation as a 
means to obtain it. There are also problems related to synonymy and homonymy, the lack of 
unification of the concepts, and many others. 

The Semantic Web resolves this issues by adopting unique identifiers for the pieces of information 
that are to be retrieved, as well as for the relationships between those pieces where such 
relationships exist. These identifiers, called “Universal Resource Identifiers” (URIs) (a “resource” is any 
retrievable piece of information, including the relationships these pieces have to each other) are 
similar to Web pages URLs but do not necessarily have a web page or any kind of content: their sole 
purpose is to uniquely identify an object and its relationships. 

Having taken down, through the use of URIs, the ambiguity of the retrievable data, the Semantic Web 
takes a step further and relates the individual pieces of data to the conceptual categories they belong 
thus making it possible to turn the existing disarray of information into truly usable knowledge. This is 
achieved by ontologies – hierarchical structures of concepts– and by bonding the individual pieces of 
data to these concepts. 

3.1.1 Resource Description Framework (RDF) 

Notwithstanding its rapid growth and development, the World-Wide Web today is still largely 
burdened by its original sin – its content cannot be interpreted by machines as far as meaning and 
semantics are concerned. Machines cannot understand meaning, therefore they cannot  understand 
web content. For this reason, most attempts to retrieve some useful pieces of information from the 
Web require a high degree of user involvement – manually retrieving information from multiple 
sources (different Web pages), “digging” through multiple search engine results (where the useful 
pieces of data are often berried many pages deep), comparing differently structured results sets of 
data (most of them incomplete), and so on.  

For the machine interpretation of semantic content to become possible, there are two prerequisites:  
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1. Every piece of useful information needs to be uniquely identified. (For example, if one and the 

same person, named, say John Doe, owns a web site, authors articles on other sites, gives an 
interview on another site, and, in addition to that, has profiles in a couple of social media like 
Facebook and LinkedIn, the occurrences of his name in all those places should be related to 
one and the same unique identifier.) 

2. There must be a unified system of conveying and interpreting meaning that all automated 
search agents and data storage applications could use.  

One reasonable approach to this which, in the recent years, has become the backbone of the 
Semantic Web as it currently is, is to embed the necessary machine-processable information into the 
web content itself through the use of special meta-descriptors (meta-tagging) in addition to the 
existing meta-tags that concern mainly the layout.  

Within these meta tags, the resources (the pieces of useful information) can be uniquely identified in 
the same manner in which Web pages are uniquely identified (by extending the existing URL system 
into something more universal – a URI (Uniform Resource Identifier) system, just like in algebra 
complex numbers extend the real numbers system). In addition to that, some simple programming-
logic-like conventions can be devised and agreed upon, so that resources can be described in terms of 
properties and values (resources can have properties and properties can have values). The concrete 
implementations of these conventions can be then embedded into the web pages (through meta-
descriptors again) thus effectively “telling” the processing machines things like “resource ‘John Doe’ 
has a [property] ‘web site’” and “this particular property ‘web site’ has the value of 
‘www.johndoesite.com’.”  

More precisely, there needs to be a system of machine-processable identifiers for identifying these 
concrete implementations (called “statements”) and the individual elements of which the statements 
are built (subject, predicate, or object) without any possibility of confusion with a similar-looking 
identifier that might be used by someone else on the Web.  

The Resource Description Framework (RDF) developed by the World Wide Web Consortium (W3C) 
makes possible the automated semantic processing of information as outlined above. Although 
frequently referred to as a “language”, RDF is mainly a data model. It is based on the idea that the 
things being described have properties which have values, and that resources can be described by 
making statements. RDF prescribes how to make statements about resources, in particular, Web 
resources, in the form of subject-predicate-object expressions. The examples above (“resource ‘John 
Doe’ has a [property] ‘web site’” and “this particular property ‘web site’ has the value of 
‘www.johndoesite.com’”) are precisely this kind of statements. Because these expressions always 
follow the triple subject-predicate-object structure, they are known as “triples” in RDF terminology. 
(“Resource ‘John Doe’ [= subject] has [= predicate] a ‘web site’ [=object].”) [32] 

The basic RDF concepts include Uniform Resource Identifiers, statements, and properties. They are 
discussed in the respective topics that follow.  

3.1.1.1 Uniform Resource Identifiers (URIs) 

If we can think of a resource as an object, a “thing” we want to talk about, then the Uniform 
Resource Identifier (URI) is its “ID card” which uniquely identifies it. Resources can be authors, books, 
publishers, places, people, hotels, goods, articles search queries, and so on. In the Semantic Web, 
every resource has a URI. A URI can be a URL or some other kind of unique identifier. Unlike URLs, 
URIs do not necessarily enable access to the resource they describe, that is, in most cases they do not 
represent actual web pages. For example, the string “http://www.johndoesite.com/aboutme.htm” if 
used as a URL (Web link) is expected to take us to a Web page of the site providing information about 
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the site owner, the person John Doe; the same string however can serve as the URI uniquely 
identifying that person on the Web irrespective of whether such a page exists or not. 

Thus URI schemes can be defined not only for Web locations but also for such diverse objects as 
telephone numbers, ISBN numbers, and geographic locations. There has been a long discussion about 
the nature of URIs (see [40]), but we will not go into detail here. In general, we assume that a URI is 
the identifier of a Web resource and, as such, can be used as either the subject or the object of a 
statement. Once the subject is assigned a URI, it can be treated as a resource and further statements 
can be made about it. 

This idea of using URIs to identify “things” and the relations between them is quite important. This 
choice gives us in one stroke global, worldwide, unique naming schemes. The use of such a scheme 
greatly reduces the homonym problem that has plagued distributed data representation until now. 

3.1.1.2 Statements – Object-Attribute-Value Triples 

If we want to make the information in following sentence 

“The web site www.johndoesite.com is created by John Doe.” 

machine-accessible on the Semantic Web, the first thing we need to do is to express it the form of an 
RDF statement, that is, an object-attribute-value triple: 

“The web site www.johndoesite.com has a creator whose name is John Doe.” 

Revised in this manner, the statement emphasizes some of its parts to illustrate that, in order to 
describe something, there need to be ways to name, or identify, a number of things: 

 the thing the statement describes (Web site “www.johndoesite.com”, in this case)  

 a specific property (“creator”, in this case) of the thing the statement describes  

 the thing the statement says is the value of this property (who the owner is), for the thing the 
statement describes  

The respective RDF terms for the various parts of the statement are: 

 the subject is the URL “www.johndoesite.com”  

 the predicate is the expression “has creator”  

 the object is name of the owner  

 the value of the object is the phrase “John Doe” 

Next, each member of the subject-predicate-object triple should be presented through its URIs, for 
example: 

 the subject is “http://www.johndoesite.com”  

 the predicate is “http://purl.org/dc/elements/1.1/creator” (this is according to a particular RDF 
Schema (see “RDF Schema (RDFS)” on page 11), namely, the Dublin Core Metadata Element 
Set; refer to “Sharing Vocabularies” (page 13) and “Dublin Core Metadata Initiative” (page 13) 
for details) 

 the object is  “http://www.johndoesite.com/aboutme” (may not exist as an actual web page) 

Note that in this version of the statement, instead of identifying the creator of the web site by the 
character string “John Doe”, we used a URI, namely “http://www.johndoesite.com/aboutme”. An 
advantage of using a URI in this case is that the identification of the statement’s subject can be more 
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precise. That is, the creator of the page is neither the character string “John Doe”, nor any one of the 
thousands of people with that name, but the particular John Doe associated with that URI (whoever 
created the URI defines the association). Moreover, since there is a URI to refer to John Doe, he is 
now a full-fledged resource and additional information can be recorded about him, simply by adding 
additional RDF statements with John’s URI as the subject. 

What we basically have now is a the logical formula P(x, y), where the binary predicate P relates the 
object x to the object y and we may think of this formula as written in the form (x, P, y)1. Therefore, 
we can describe the statement as 

<http://www.johndoesite.com> <http://purl.org/dc/elements/1.1/creator> 
<http://www.johndoesite.com/aboutme> 

Now this is quite a clumsy notation, so there is a convention in RDF for an abbreviated way of 
describing statements. It uses a shorthand way of writing triples (the same shorthand is also used in 
the RDF specifications). This shorthand employs an XML qualified name (or QName) without angle 
brackets as an abbreviation for a full URI reference. A QName contains a prefix that has been 
assigned to a namespace URI, followed by a colon, and then a local name. The full URI reference is 
formed from the QName by appending the local name to the namespace URI assigned to the prefix. 
So, for example, if the QName prefix “foo” is assigned to the namespace URI 
“http://example.com/somewhere/”, then the QName “foo:bar” is shorthand for the URI 
“http://example.com/somewhere/bar”. 

In our example, we can define the namespace “jds” for “http://www.johndoesite.com” and use the 
existing in the Dublin Core Metadata namespace “dc” for “http://purl.org/dc/elements/1.1/.” So the 
shorthand form of the statement is going to be: 

jds: dc:creator jds:aboutme 

The triple nature of the RDF statements naturally leads to representing them as graphs. (The RDF’s 
graph model is defined in [34].) In this notation, a statement is represented by: 

 a node for the subject  
 a node for the object  
 an arc for the predicate, directed from the subject node to the object node.  

So the RDF statement above would be represented by the graph shown in Figure 1: 

 Figure 1 - Graphic representation of a triple 

                                                

1 In fact, RDF offers only binary predicates (properties). If more complex relationships are to be defined, this is 
done through sets of multiple RDF triples.  

http://www.johndoesite.com/

http://purl.org/dc/elements/1.1/creator 

http://www.johndoesite.com/aboutme
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This kind of graph is known in the artificial intelligence community as a “semantic net”. [32] 

In order to represent RDF statements in a machine-processable way, RDF uses mark-up languages, 
namely (and almost exclusively) the Extensible Mark-up Language (XML)1. XML was designed to allow 
anyone to design their own document format and then write a document in that format. RDF defines 
a specific XML mark-up language, referred to as RDF/XML, for use in representing RDF information 
and for exchanging it between machines. Written in RDF/XML, our example will look as follows: 

 
<?xml version="1.0" encoding="UTF-16"?> 
 
<rdf:RDF 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:jds="http://www.johndoesite.com/"> 
 

<rdf:Description rdf:about="http://www.johndoesite.com/"> 
<dc:creator rdf:resource="jds:aboutme"> 

</rdf:Description> 
 
</rdf:RDF> 

Note that RDF/XML uses the namespace mechanism of XML, but in an expanded way. In XML, 
namespaces are only used for disambiguation purposes. In RDF/XML, external namespaces are 
expected to be RDF documents defining resources, which are then used in the importing RDF 
document. This mechanism allows the reuse of resources by other people who may decide to insert 
additional features into these resources. The result is the emergence of large, distributed collections 
of knowledge. 

Also observe that the rdf:about attribute of the element rdf:Description is, strictly speaking, 
equivalent in meaning to that of an ID attribute, but it is often used to suggest that the object about 
which a statement is made has already been “defined” elsewhere.2 

Of course, there is much more to RDF/XML logic and syntax than we could possibly cover here. For a 
discussion of the principles behind the modelling of RDF statements in XML (known as “striping”), 
together with a presentation of the available RDF/XML abbreviations and other details and examples 
about writing RDF in XML, see the (normative) RDF/XML Syntax Specification by the W3C, [33]. 

3.1.1.3 Properties 

Properties are a special kind of resources: they describe relations between resources, for example 
“written by”, “age”, “title”, and so on. Properties in RDF are also identified by URIs (in most cases, 
these are actual URLs). Therefore, properties themselves can be used as the object in an object-
attribute-value triple (statement). This possibility is rather unusual for modelling languages and 
therefore potentially confusing for modellers, but it offers great flexibility. 

                                                

1 Because an abstract data model needs a concrete syntax in order to be represented and transmitted, RDF has 
been given a syntax in XML. As a result, it inherits the benefits associated with XML. However, it is important to 
understand that other syntactic representations of RDF, not based on XML, are also possible; XML-based syntax is 
not a necessary component of the RDF model. 

2 Strictly speaking, a set of RDF statements together simply forms a large graph, relating things to other things 
through properties, and there is no such concept as “defining” an object in one place and referring to it 
elsewhere. Nevertheless, in the serialized XML syntax, it is sometimes useful (if only for human readability) to 
suggest that one location in the XML serialization is the “defining” location, while other locations state “additional” 
properties about an object that has been “defined” elsewhere. 
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3.1.1.4 Named Graphs 

Basically, a named graph (NG) is a set of triples named by an URI. This URI can then be used outside 
or within the graph to refer to it, [26]. Named Graphs reflect the idea that having multiple RDF graphs 
in a single document or repository and naming them with URIs provides some further useful 
functionality in addition to that of the standard RDF triples. 

Named graphs  represent an extension of the RDF data model, where quadruples <s,p,o,ng> are 
used to define RDF multi-graph. This mechanism allows for handling provenance when multiple RDF 
graphs are integrated in a single repository. For information on the semantics and the abstract syntax 
of named graphs, refer to [6]. 

From the perspective of OWLIM, named graphs are important because the comprehensive support for 
SPARQL (the most popular RDF query language and current W3C recommendation – see “SPARQL” on 
page 22) requires NG support. 

3.1.2 RDF Schema (RDFS) 

While being a universal model that lets users describe resources using their own vocabularies, RDF 
does not make assumptions about any particular application domain, nor does it define the semantics 
of any domain. Is it up to the user to do so in RDF Schema (RDFS).  

RDF Schema is a vocabulary description language for describing properties and classes of RDF 
resources, with a semantics for generalization hierarchies of such properties and classes.1 Thus RDFS 
makes semantic information machine-accessible, in accordance with the Semantic Web vision. RDF 
Schema is a primitive ontology language. It offers certain modelling primitives with fixed meaning.  

RDF Schema does not provide a vocabulary of application-specific classes. Instead, it provides the 
facilities needed to describe such classes and properties, and to indicate which classes and properties 
are expected to be used together (for example, to say that the property “JobTitle” will be used in 
describing a class “Person”). In other words, RDF Schema provides a type system for RDF.  

The RDF Schema type system is similar in some respects to the type systems of object-oriented 
programming languages such as Java. For example, RDFS allows resources to be defined as instances 
of one or more classes. In addition, it allows classes to be organized in a hierarchical fashion; for 
example a class “Dog” might be defined as a subclass of “Mammal” which itself is a subclass of 
“Animal”, meaning that any resource which is in class “Dog” is also implicitly in class “Animal” as well.  

RDF classes and properties, however, are in some respects very different from programming language 
types. RDF class and property descriptions do not create a straightjacket into which information must 
be forced, but instead provide additional information about the RDF resources they describe. 

The RDFS facilities are themselves provided in the form of an RDF vocabulary; that is, as a specialized 
set of predefined RDF resources with their own special meanings. The resources in the RDFS 
vocabulary have URIs with the prefix http://www.w3.org/2000/01/rdf-schema# (conventionally 
associated with the QName prefix rdfs). Vocabulary descriptions (schemas) written in the RDFS 
language are legal RDF graphs. Hence, RDF software that is not written to also process the additional 
RDFS vocabulary can still interpret a schema as a legal RDF graph consisting of various resources and 
properties, but will not “understand” the additional built-in meanings of the RDFS terms. To 

                                                

1 Please be aware of the fact that that the RDF Schema is conceptually different from the XML Schema even 
though the common term “schema” suggests similarity. XML Schema constrains the structure of XML documents, 
whereas RDF Schema defines the vocabulary used in RDF data models. 
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understand these additional meanings, RDF software must be written to process an extended 
language that includes not only rdf:vocabulary, but also rdfs:vocabulary, together with their 
built-in meanings. 

3.1.2.1 Describing Classes 

A class can be thought of as a set of elements. Individual objects that belong to a class are referred to 
as instances of that class. A class in RDFS corresponds to the generic concept of a type or category, 
somewhat like the notion of a class in object-oriented programming languages such as Java. RDF 
classes can be used to represent almost any category of thing, such as web pages, people, document 
types, databases, or abstract concepts. Classes are described using the RDF Schema resources 
rdfs:Class and rdfs:Resource, and the properties rdf:type and rdfs:subClassOf. The 
relationship between instances and classes in RDF is defined using rdf:type. 

An important use of classes is to impose restrictions on what can be stated in an RDF document using 
the schema. In programming languages, typing is used to prevent nonsense from being written (such 
as A+1, where A is an array, so we explicitly state that the arguments of + must be numbers). The 
same is needed in RDF: imposing a restriction on the objects to which the property can be applied. In 
mathematical terms, this is a restriction of the domain of the property. 

3.1.2.2 Describing Properties 

In addition to describing the specific classes of things they want to describe, user communities also 
need to be able to describe specific properties that characterize those classes of things (such as 
NumberOfBedrooms to describe an apartment). In RDFS, properties are described using the RDF 
class rdf:Property, and the RDFS properties rdfs:domain, rdfs:range, and 
rdfs:subPropertyOf. 

All properties in RDF are described as instances of class rdf:Property. So a new property, such as 
exterms:weightInKg, is described by assigning the property a URIref, and describing that resource 
with an rdf:type property whose value is the resource rdf:Property, for example, by writing the 
RDF statement: 

exterms:weightInKg   rdf:type   rdf:Property . 

RDFS also provides vocabulary for describing how properties and classes are intended to be used 
together in RDF data. The most important information of this kind is supplied by using the RDFS 
properties rdfs:range and rdfs:domain to further describe application-specific properties.  

The rdfs:range property is used to indicate that the values of a particular property are instances of 
a designated class. For example, if a site located on domain “example.com”  and, for this reason using 
the prefix “ex” as a shortcut for “http://www.example.com”, wanted to indicate that the property 
ex:author had values that are instances of class ex:Person, it would write the RDF statements: 

ex:Person   rdf:type     rdfs:Class . 
ex:author   rdf:type     rdf:Property . 
ex:author   rdfs:range   ex:Person . 

These statements indicate that ex:Person is a class, ex:author is a property, and that RDF 
statements using the ex:author property have instances of ex:Person as objects. 

The rdfs:domain property is used to indicate that a particular property applies to a designated 
class. For instance, if example.com wanted to indicate that the property ex:author applies to 
instances of class ex:Book, it would write the RDF statements: 
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ex:Book     rdf:type      rdfs:Class . 
ex:author   rdf:type      rdf:Property . 
ex:author   rdfs:domain   ex:Book . 

These statements indicate that ex:Book is a class, ex:author is a property, and that RDF 
statements using the ex:author property have instances of ex:Book as subjects. [32] 

3.1.2.3 Sharing Vocabularies 

Just because RDFS provides you with the means of creating your own vocabularies, this does not 
mean that you necessarily have to do so. In most cases, it is much better and easier to use an 
existing vocabulary created by someone else who has already been describing a conceptual domain 
same or similar as your own. Such publicly available vocabularies, called “shared vocabularies” are not 
only cost-efficient to use, but they also reflect and promote the shared understanding of the described 
concepts. 

In the example used earlier, in the triple 

jds:   dc:creator   jds:aboutme . 

the predicate dc:creator, when fully expanded as a URI, is an unambiguous reference to the 
creator attribute in the Dublin Core metadata attribute set (discussed further in the Dublin Core 
Metadata Initiative topic), a widely-used set of attributes (properties) for describing information of this 
kind. So this triple is effectively saying that the relationship between the web site (identified by 
http://www.johndoesite.com/ ) and the creator of the site (a distinct person, identified by 
http://www.johndoesite.com/aboutme.htm) is exactly the concept identified by 
http://purl.org/dc/elements/1.1/creator. This way, anyone familiar with the Dublin Core vocabulary or 
those who find out what dc:creator means (say, by looking up its definition on the Web) will know 
what is meant by this relationship. In addition, based on this understanding, people can write 
programs to behave in accordance with that meaning when processing triples containing the predicate 
dc:creator. 

Of course, this depends on increasing the general use of URIs to refer to things instead of using 
literals (i.e., using URIs like jds:aboutme and dc:creator instead of character string literals like 
“John Doe” and “creator”). Even then, RDF's use of URIs does not solve all identification problems 
because, for example, people can still use different URIrefs to refer to the same thing. For this reason, 
it is a good idea to have a preference towards using terms from existing vocabularies (such as the 
Dublin Core) where possible, rather than making up new terms that might overlap with those of some 
other vocabulary. Appropriate vocabularies for use in specific application areas are being developed all 
the time, however, even when synonyms are created this way, the fact that these different URIs are 
used in the commonly-accessible "Web space" provides the opportunity both to identify equivalences 
among these different references and to migrate toward the use of common references. 

3.1.2.4 Dublin Core Metadata Initiative 

An example of a shared vocabulary that is readily available for reuse is The Dublin Core. The Dublin 
Core is a set of "elements" (properties) for describing documents (and hence, for recording 
metadata). The element set was originally developed at the March 1995 Metadata Workshop in 
Dublin, Ohio, USA. The Dublin Core has subsequently been modified on the basis of later Dublin Core 
Metadata workshops and is currently maintained by the Dublin Core Metadata Initiative.  

The goal of the Dublin Core is to provide a minimal set of descriptive elements that facilitate the 
description and the automated indexing of document-like networked objects, in a manner similar to a 
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library card catalogue. The Dublin Core metadata set is suitable for use by resource discovery tools on 
the Internet, such as the web crawlers employed by search engines. In addition, the Dublin Core is 
meant to be sufficiently simple to be understood and used by the wide range of authors and casual 
publishers who contribute information to the Internet.  

Dublin Core elements have become widely used in documenting Internet resources (the Dublin Core 
creator element has already been used in the earlier examples). The current elements of the Dublin 
Core are defined in [10] and contain definitions for the following properties like “Title” (“A name given 
to the resource.”), “Creator” (“An entity primarily responsible for making the content of the 
resource.”), “Date” (“A date associated with an event in the life cycle of the resource.”), and “Type” 
(“The nature or genre of the content of the resource.”). 

Information using the Dublin Core elements may be represented in any suitable language (e.g., in 
HTML meta elements). However, RDF is an ideal representation for Dublin Core information. The 
following example taken from [19] uses Dublin Core by itself to describe an audio recording of a guide 
to growing rose bushes: 

<rdf:RDF  
   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
   xmlns:dc="http://purl.org/dc/elements/1.1/"> 
 
   <rdf:Description rdf:about="http://media.example.com/audio/guide.ra"> 
 
      <dc:creator>Rose Bush</dc:creator> 
      <dc:title>A Guide to Growing Roses</dc:title> 
      <dc:description>Describes process for planting and nurturing 
different kinds of rose bushes.</dc:description>  
      <dc:date>2001-01-20</dc:date> 
 
   </rdf:Description>  
</rdf:RDF> 

3.1.3 Ontologies and Knowledge Bases 

In general, an ontology describes formally a domain of related concepts. It consists of (usually finite) 
list of terms and the relationships between these terms. The terms denote important concepts 
(classes of objects) of the domain. For example, in a company setting, staff members, managers, 
company products, offices, and departments are some important concepts. The relationships typically 
include hierarchies of classes. A hierarchy specifies a class C to be a subclass of another class C’ if 
every object in C is also included in C’. For example, all managers are staff members.  

Apart from subclass relationships, ontologies may include information 

 such as properties (X is subordinated Y) 

 value restrictions (only managers may head departments) 

 disjointness statements (managers and general employees are disjoint) 

 specifications of logical relationships between objects (every department must have at least 
three staff members) 

Ontologies are important because semantic repositories use ontologies as semantic schemata. This 
makes automated reasoning about the data possible (and easy to implement) since the most essential 
relationships between the concepts are built-in into the ontology. (For details on semantic repositories 
refer to the Semantic Repositories topic on page 24.) 
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Formal knowledge representation (KR) is about building models1 of the world (of a particular state of 
affairs, situation, domain or problem), which allow for automatic reasoning and interpretation. Such 
formal models are achieved through the use of ontologies, whenever they (are intended to) represent 
a shared conceptualization (e.g. a basic theory, a schema, or a classification). Ontologies can be used 
to provide formal semantics (i.e. machine-interpretable meaning) to any sort of information: 
databases, catalogues, documents, web pages, etc. Ontologies can be used as semantic frameworks: 
the association of information with ontologies makes such information much more amenable to 
machine processing and interpretation. This is because formal ontologies are represented in logical 
formalisms, such as OWL, [8], which allow automatic inferencing over them and over datasets aligned 
to them. An important role of ontologies is to serve as schemata or “intelligent” views over 
information resources2. Thus they can be used for indexing, querying, and reference purposes over 
non-ontological datasets and systems, such as databases, document and catalogue management 
systems. Because ontological languages have a formal semantics, ontologies allow a wider 
interpretation of data, i.e. inference of facts which are not explicitly stated. In this way, they can 
improve the interoperability and the efficiency of the usage of arbitrary datasets. 

An ontology can be characterized as comprising a 4-tuple3 is 

O = <C,R,I,A> 

where  

 C  is a set of classes representing concepts we wish to reason about in the given domain 
(invoices, payments, products, prices,…).  

 R  is a set of relations (also referred to as properties or predicates) holding between 
(instances of) those classes (Product hasPrice Price). 

 I  is a set of instances, where each instance can be an instance of one or more classes and 
can be linked to other instances or to literal values (strings, numbers, …) by relations 
(product23 compatibleWith product348; product23 hasPrice €170).  

 A  is a set of axioms (if a product has a price greater than €200, then shipping is free). 

 

3.1.3.1 Classification of Ontlologies 

The ontologies can be classified as light-weight or heavy-weight according to the complexity of the KR 
language used. Light-weight ontologies allow for more efficient and scalable reasoning, but do not 
possess the high predictive (or restrictive) power of the full-bodied concept definitions of heavy-
weight ontologies. The ontologies can be further differentiated according to the sort of 
conceptualization that they formalize: upper-level ontologies model general knowledge, while domain- 
and application ontologies represent knowledge about a specific domain (e.g. medicine or sport) or a 
type of applications (e.g. knowledge management systems). Basic definitions regarding ontologies can 
be found in [13], [14], [15], and [16]. 

                                                

1 The typical modelling paradigm is mathematical logic, but there are also other approaches, rooted in 
information and library science.  KR is a very broad term; here we only refer to one of its main streams. 

2 Comments in the same spirit are provided in [14] also. This is also the role of ontologies on the Semantic Web. 

3 A more formal and extensive mathematical definition of an ontology is given in [11]. The characterization 
offered here is suitable for the purposes of our discussion, however. 
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Finally, ontologies can be distinguished according to the sort of semantics being modelled and their 
intended usage. The major categories from this perspective are: 

 Schema-ontologies: ontologies which are close in purpose and nature to database and object-
oriented schemata. They define classes of objects, their appropriate attributes and 
relationships to objects of other classes. A typical usage of such an ontology is defining and 
managing of large sets of instances of the classes. Intuitively, a class in a schema ontology 
corresponds to a table in an RDBMS; a relation – to a column; an instance – to a row in the 
table for the corresponding class.  

 Topic-ontologies: taxonomies which define hierarchies of topics, subjects, categories, or 
designators. These have a wide range of applications related to classification of different 
things (entities, information resources, files, web-pages, etc.) The most popular examples are 
library classification systems and taxonomies, which are widely used in the KM field. Yahoo 
and DMoz1 are popular large scale incarnations of this approach in the context of the Web. A 
number of the most popular taxonomies are listed as encoding schemata in Dublin Core [9]. 

 Lexical ontologies: lexicons with formal semantics, which define lexical concepts2, word-
senses and terms. These can be considered as semantic thesaurus or dictionaries. The 
concepts defined in such ontologies are not instantiated, rather they are directly used as 
reference, e.g. for annotation of the corresponding terms in text. WordNet is the most popular 
general purpose (i.e. upper-level) lexical ontology. 

3.1.3.2 Knowlegde Bases 

Knowledge base (KB) is a broader term than ontology. Similarly to an ontology, a KB is represented in 
a KR formalism, which allows automatic inference. It could include multiple axioms, definitions, rules, 
facts, statements, and any other primitives. In contrast to ontologies, however, KBs are not intended 
to represent a shared or consensual conceptualization. Thus, ontologies are a specific sort of KB. 
Many KBs can be split into ontology and instance data parts, in a way analogous to the splitting of 
schemata and concrete data in databases. A broader discussion on the different terms related to 
ontology and semantics can be found in [23]. 

3.1.3.2.1 PROTON 

PROTON (see [38]) is a light-weight upper-level schema-ontology 
developed in the scope of the SEKT project (see [35]). It is used in 
the KIM system, [30] for semantic annotation, indexing and retrieval. 
We will also use it for ontology-related examples within this section. 
PROTON is encoded in OWL Lite  and  defines about 300 classes and 
100 properties, providing good coverage of named entity types and 
concrete domains (i.e. modelling of concepts such as people, 
organizations, locations, numbers, dates, addresses, etc.), [31]. A 
snapshot of the PROTON class hierarchy is given in Figure 2. 

Figure 2 - A view of the top part 

of the PROTON class hierarchy
                                                

1 http://www.yahoo.com and http://www.dmoz.org respectively. 

2 We use ‘lexical concept’ here as some kind of a formal representation of the meaning of a word or a phrase. In 
Wordnet, for example, lexical concepts are modelled as synsets (synonym sets), while word-sense is the relation 
between a word and a synset. 
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3.1.4 Logic, Inference, and Ontology Languages 

The topics that follow take a closer look at the logic that underlies the retrieval and manipulation of 
semantic data and the kind of programming that supports it. 

3.1.4.1 Logical Programming 

All that semantic structuring of data discussed in the previous topics would be meaningless if there 
weren’t in existence a special kind of programs that are capable of reading and “understanding” such 
data and also of making deductions and inferences based on it. This kind of programs operate on the 
premises of logic and are a product of a specialized kind of programming called “logical programming” 
(LP). 

In LP, a program consists of a collection of statements expressed as formulas in symbolic logic. (This 
is in sharp contrast to declarative programming where a program is a set of commands that need to 
be executed in a strict order.) There are rules of inference from logic that allow a new statement to be 
derived from old ones, with the guarantee that if the old statements are true, so is the new one.  

Because these rules of inference can be expressed in purely symbolic terms, applying them is the kind 
of symbol manipulation that can be carried out by a computer. This is what happens when a computer 
executes a logical program: it uses the rules of inference to derive new statements from the ones 
given in the program, until it finds one that expresses the solution to the problem that has been 
formulated. If the statements in the program are true, then so are the statements that the machine 
derives from them, and the answers it gives will be correct.  

The program can give correct answers only if the following two conditions are met: 

1. The program must contain only true statements. 

2. The program should contain enough statements to allow solutions to be derived for all the 
problems that are of interest.  

There must also be a reasonable time frame for the entire inference process. To this end, the 
derivations the machine carries out should be fairly short, so that the machine could find answers 
quickly, and this may affect the form in which definitions are made and properties stated in the 
program. Nevertheless, each formula can be understood in isolation as a true statement about the 
problem to be solved. 

3.1.4.2 Predicate Logic 

From a more abstract viewpoint, the subject of the previous topic is related to the foundation upon 
which logical programming resides, which is logic, particularly in the form of predicate logic (also 
known as “first order logic”). Some of the specific features of predicate logic render it very suitable for 
making inferences over the Semantic Web, namely: 

 It provides a high-level language in which knowledge can be expressed in a transparent way 
and with a high expressive power. 

 It has a well-understood formal semantics, which assigns an unambiguous meaning to logical 
statements. 

 There exist proof systems that can automatically derive statements syntactically from a set of 
premises. Its proof systems are both sound (meaning that all derived statements follow 
semantically from the premises) and complete (all logical consequences of the premises can 
be derived in the proof system). 
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 It is possible to trace the proof that leads to a logical consequence. (This is because the proof 

system is sound and complete.) In this sense, the logic can provide explanations for answers. 

The languages of RDF and OWL (Lite and DL) can be viewed as specializations of predicate logic. One 
reason for such specialized languages to exist is that they provide a syntax that fits well with the 
intended use (in our case, Web languages based on tags). The other major reason is that they define 
reasonable subsets of logic. This is important because there is a trade-off between the expressive 
power and the computational complexity of certain logics: the more expressive the language, the less 
efficient (in the worst case) the corresponding proof systems. As we stated, OWL Lite and OWL DL 
correspond roughly to a description logic, a subset of predicate logic for which efficient proof systems 
exist. 

Another subset of predicate logic with efficient proof systems comprises the so-called rule systems 
(also known as Horn logic or definite logic programs). A rule has the form 

A1, . . . An  B 

where Ai and B are atomic formulas. In fact, there are two intuitive ways of reading such a rule: 

 If A1, . . . , An are known to be true, then B is also true. Rules with this interpretation are 
referred to as “deductive rules”. 

 If the conditions A1, . . . , An are true, then carry out the action B. Rules with this 
interpretation are referred to as “reactive rules”. 

Both approaches have important applications. The deductive approach, however, is more relevant to 
the purpose of retrieving and managing structured data. This is because it relates better to the 
possible queries that one can ask, as well as to the appropriate answers and their proofs. 

3.1.4.3 Description Logic 

Description Logic (DL) historically evolved from a combination of frame-based systems and predicate 
logic. Its main purpose is to overcome some of the problems with frame-based systems and to 
provide a clean and efficient formalism to represent knowledge. The main idea of DL is to describe the 
world in terms of “properties” or “constraints” that specific “individuals” have to satisfy. DL is based on 
the following basic entities, [1]:  

 Objects – Correspond to single “objects” of the real world such as a specific person, a table 
or a telephone. The main properties of an object are that it can be distinguished from other 
objects and that it can be referred to by a name. DL objects correspond to the individual 
constants in predicate logic.  

 Concepts – Can be seen as “classes of objects”. Concepts have two functions: on one hand, 
they describe a set of objects, on the other hand they determine properties of objects. For 
example the class “table” is supposed to describe the set of all table (-objects) in this world. 
On the other hand it determines some properities of a table such as having four legs and a 
flat horizontal surface hat you can lay something on. DL concepts correspond to one-place 
predicates in predicate logic and to classes in frame-based systems.  

 Roles – Represent relationships between objects. For example the role “lays on” may 
determine the relationship between a book and a table, where the book lays on the table. 
Roles also can be applied to concepts. However they do not describe the relationship between 
the classes (concepts) but describe the properties of those objects that are members of that 
classes. 
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 Rules – In DL, rules take the form of “if condition x (left side), then property y (right side)” 

and form statements that read as “if an object satisfies the condition on the left side, then it 
has the properties of the right side”. So, for instance, a rule can state something like “if an 
object is male and has atleast one child, then it is a father”. 

The family of description logic system consists of many members that in particular differ with respect 
to the constructs they provide. Not all of the constructs can be found in a single DL system and only 
some of them are applicable to the area of natural language processing. For a listing of some concrete 
constructs with a brief explanation of their semantics, refer to [1].  

3.1.5 Web Ontology Language (OWL) and Its Dialects 

In order to match the expectations for a useful heap of ontologies and structured metadata, the 
Semantic Web requires scalable high-performance storage and reasoning infrastructure. The major 
challenge towards building such an infrastructure is the expressivity of the underlying standards: RDF 
(see  [24]), RDFS (see [3]) and OWL (see [8]). Even though RDFS can be considered a simple KR 
language, it is already a challenging task to implement a repository for it, which provides performance 
and scalability comparable to those of relational database management systems (RDBMS). Going up 
the stairs of the Semantic Web specifications stack, the challenges for the repository engineers are 
getting more and more serious. Even the simplest dialect of OWL (OWL Lite) is a description logic 
(DL) formalism with no algorithms enabling efficient inference and query answering over reasonably 
scaled KBs. Furthermore, the semantics of OWL Lite and DL are incompatible with that of RDF(S), see 
[12]. This causes lack of “backward compatibility”. Imagine the situation when an application, which 
uses RDFS schemata and RDFS-compliant repository, should be “upgraded” to OWL. The evolution 
should start with the replacement of the RDFS schemata with the OWL ontologies and adoption of a 
repository supporting (the corresponding part of) OWL. Even the most direct translation (re-labelling 
the rdfs:Class-es to owl:Class) of the schema, without  adding further complexity, can lead to 
different inference and to inconsistencies. 

Figure 3 presents a simplified map of the expressivity or complexity1 of a number of OWL-related 
languages, as well as their bias towards description logic (DL) and Logical Programming (LP, see 
“Logical Programming” on page 17) based semantics. It presents the positioning of OWLIM’s 
reasoning capabilities (the owl-max rule-set), as it is discussed in Ref. An extended discussion on the 
topic can be found at: http://www.ontotext.com/inference/rdfs_rules_owl.html. 

                                                

1 The diagram provides a very rough idea about the expressivity of the languages, based on the complexity of 
entailment for them. Direct comparison between the different languages is impossible in many of the cases. For 
instance, Datalog is not simpler than OWL DL, it just allows for a different type of complexity. 
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Figure 3 - OWL Layering Map 

3.1.5.1 OWL DLP 

OWL DLP is a non-standard dialect, offering a promising compromise between expressive power, 
efficient reasoning, and compatibility. It is defined in [12] as the intersection of the expressivity of 
OWL DL and LP. In fact, OWL DLP is defined as the most expressive sub-language of OWL DL, which 
can be mapped to Datalog. OWL DLP is simpler than OWL Lite. The alignment of its semantics to the 
one of RDFS is easier, as compared to the Lite and DL dialects. Still, this can only be achieved through 
the enforcement of some additional modelling constraints and transformations. A broad collection of 
information related to OWL DLP can be found on [27]. 

Horn logic and description logics are orthogonal (in the sense that neither of them is a subset of the 
other). DLP is the “intersection” of Horn logic and OWL; it is the Horn-definable part of OWL, or stated 
another way, the OWL-definable part of Horn logic. 

DLP has certain advantages: 

 From modeller’s perspective, there is freedom to use either OWL or rules (and associated 
tools and methodologies) for modelling purposes, depending on the modeller’s experience and 
preferences. 

 From implementation perspective, either description logic reasoners or deductive rule systems 
can be used. Thus it is possible to model using one framework, for instance, OWL, and to use 
a reasoning engine from the other framework, for instance, rules. This feature provides extra 
flexibility and ensures interoperability with a variety of tools. 

Experience with using OWL has shown that existing ontologies frequently use very few constructs 
outside the DLP language. 
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3.1.5.2 OWL Horst 

In [37] ter Horst defines RDFS extensions towards rule support and describes a fragment of OWL, 
more expressive than DLP. He introduces the notion of R-entailment of one (target) RDF graph from 
another (source) RDF graph on the basis of a set of entailment rules R. R-entailment is more general 
than the D-entailment used by Hayes, [18], in defining the standard RDFS semantics. Each rule has a 
set of premises, which conjunctively define the body of the rule. The premises are “extended” RDF 
statements, where variables can take any of the three positions.  

The head of the rule comprises of one or more consequences, each of which is, again, an extended 
RDF statement. The consequences may not contain free variables, i.e. which are not used in the body 
of the rule. The consequences may contain blank nodes. 

The extension of the R-entailment (as compared to the D-entailment) is that it “operates” on top of 
the so-called generalized RDF graphs, where blank nodes can appear as predicates. R-entailment rules 
without premises are used to declare axiomatic statements. Rules without consequences are used to 
imply inconsistency. 

In this document we refer to this extension of RDFS as “OWL Horst”. As outlined in [37], this 
language has a number of important characteristics: 

 It is a proper (backward-compatible) extension of RDFS. In contrast to OWL DLP, it puts no 
constraints on the RDFS semantics. The widely discussed meta-classes (classes as instances 
of other classes) are not disallowed in OWL Horst. It also does not enforce unique name 
assumption; 

 Unlike the DL-based rule languages, like SWRL, [20] and [25], R-entailment provides a 
formalism for rule extensions without DL-related constraints; 

 Its complexity is lower than the one of SWRL and other approaches combining DL ontologies 
with rules; see section 5 of [37].  

The “OWLIM” box covers the position on the map of the most complex OWL dialect supported by 
OWLIM – the owl-max rule-set with its partialRDFS parameter set to false; see the OWLIM 
User Guides for parameter description. The pre-defined rule sets in OWLIM do not support entailment 
of typed literals (D-entailment); more details on the semantics supported by OWLIM can be found in 
the Supported Semantics topic on page 33. 

OWL Horst is close to what SWAD-Europe has intuitively described as OWL Tiny, [36]. The major 
difference is that OWL Tiny (like the fragment supported by OWLIM) does not support entailment over 
data types. 

3.1.6 Querying Languages 

In this section, we introduce some query languages for RDF. This may beg the question as to why we 
need RDF-specific query languages at all instead of using an XML query language. The answer is that 
XML is located at a lower level of abstraction than RDF. This fact would lead to complications if we 
were querying RDF documents with an XML-based language. The RDF query languages explicitly 
capture the RDF semantics in the language design itself. 

All the querying languages discussed below have an SQL-like syntax, but there are also a few non-
SQL-like languages like Versa and Adenine. 

The query languages supported by Sesame (which is the Java framework within which OWLIM 
operates) and, therefore, by OWLIM, are SPARQL and SeRQL (see “SPARQL” and “SeRQL” below). 
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3.1.6.1.1 RQL, RDQL 

RQL (RDF Query Language) has been initially developed by the Institute of Computer Science at in 
Heraklion, Greece, in the context of the European IST project MESMUSES.3. RQL adopts the syntax of 
OQL (a query language standard for object-oriented databases), and, like OQL, is defined by means of 
a set of core queries, a set of basic filters, and a way to build new queries through functional 
composition and iterators. 

The core queries are the basic building blocks of RQL, which give access to the RDFS-specific contents 
of an RDF triple store. RQL allows queries such as Class (retrieving all classes), Property 
(retrieving all properties) or Employee (returning all instances of the class with name Employee). 
This last query, of course, also returns all instances of subclasses of Employee, since these are also 
instances of the class Employee, by virtue of the semantics of RDFS.  

RDQL (RDF Data Query Language) is a query language for RDF first developed for Jena models. RDQL 
is an implementation of the SquishQL RDF query language, which itself is derived from rdfDB.  This 
class of query languages regards RDF as triple data, without schema or ontology information unless 
explicitly included in the RDF source. 

Apart from Sesame, the following systems, too, currently provide RDQL1: Jena, RDFStore, PHP XML 
Classes, 3Store, and RAP (RDF API for PHP).  

3.1.6.1.2 SPARQL 

SPARQL (pronounced “sparkle”) is currently the most popular RDF query language; its name is a 
recursive acronym that stands for “SPARQL Protocol and RDF Query Language”. It was standardized 
by the RDF Data Access Working Group (DAWG) of the World Wide Web Consortium, and is now 
considered a key Semantic Web technology. On 15 January 2008, SPARQL became an official W3C 
Recommendation. 

SPARQL allows for a query to consist of triple patterns, conjunctions, disjunctions, and optional 
patterns. Several SPARQL implementations for multiple programming languages exist at present. 

3.1.6.1.3 SeRQL 

SeRQL (Sesame RDF Query Language, pronounced “circle”) is an RDF/RDFS query language 
developed by Sesame’s developer – Aduna – as part of Sesame. It selectively combines the features 
considered by its creators to be the best of some other (query) languages (RQL, RDQL, N-Triples, N3) 
and adds some features of its own. As of this writing, SeRQL provides advanced features not yet available 

in SPARQL. Some of SeRQL’s most important features are:  

 Graph transformation  

 RDF Schema support  

 XML Schema datatype support  

 Expressive path expression syntax 

 Optional path matching 

                                                

1 All these implementations are known to derive from the original grammar. 
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3.1.7 Reasoning Strategies 

The two principle strategies for rule-based inference are forward-chaining and backward-chaining. 

 Forward-chaining: to start from the known facts (the explicit statements) and to perform 
inference in an inductive fashion. The goals of such reasoning can vary: to compute the 
inferred closure; to answer a particular query; to infer a particular sort of knowledge (e.g. the 
class taxonomy). 

 Backward-chaining: to start from a particular fact or a query and to verify it or get all possible 
results, using deductive reasoning. In a nutshell, the reasoner decomposes (or transforms) 
the query (or the fact) into simpler (or alternative) facts, which are available in the KB or can 
be proven through further recursive transformations. 

Both of these strategies have different strong and weak points, which are studied well in the history of 
KR and expert systems. Hybrid strategies (involving partial forward- and backward-chaining) are also 
possible and proven to be efficient in many contexts.  

Let us imagine a repository which performs total forward-chaining, i.e. it tries to make sure that, after 
each update to the KB, the inferred closure is computed and made available for query evaluation or 
retrieval. This strategy is generally known as materialization. In order to avoid ambiguity with various 
partial materialization approaches, let us call such an inference strategy, taken together with the 
monotonic entailment1 assumption, total materialization.  

The principle advantages and disadvantages of the total materialization are discussed at length in [3]; 
here we provide just a short summary of them:  

 Upload/store/addition of new facts is relatively slow, because the repository is extending the 
inferred closure after each transaction for modification. In fact, all the reasoning is performed 
during the upload;  

 Deletion of facts is also slow, because the repository should remove from the inferred closure 
all the facts which are not true any longer.  

 The maintenance of the inferred closure usually requires considerable additional space (RAM, 
disk, or both, depending on the implementation);  

 Query and retrieval are fast, because no deduction, satisfiability checking, or other sorts of 
reasoning are required. The evaluation of the queries becomes computationally comparable to 
the same task for relation database management systems (RDBMS).  

Probably the most important advantage of the inductive systems, based on total materialization, is 
that they can easily benefit from RDBMS-like query optimization techniques, as long as all the data is 
available at query time. The latter makes it possible for the query evaluation engine to use statistics 
and other means in order to make "educated" guesses about the “cost” and the ”selectivity” of a 
particular constraint. These optimizations are much more complex in the case of deductive query 
evaluation.  

Total materialization is adopted as reasoning strategy in a number of popular Semantic Web 
repositories, including some of the standard configurations of Sesame and Jena. Based on publicly 
available evaluation data, it is also the only strategy which allows scalable reasoning in the range of a 

                                                

1 Under a monotonic logic, when new explicit facts (statements) are added to the KB (repository), this can cause 
that new implicit facts can extend its inferred closure, but in no case facts which were part of the inferred closure 
before, should be removed. In other words, addition of new facts can only monotonically extend the inferred 
closure. 
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billon of triples; such results are published by BBN (for DAML DB) and ORACLE (the RDF support in 
ORACLE 11g). 

3.1.8 Semantic Repositories 

Over the last decade the Semantic Web emerged as an area where semantic repositories become as 
important as the HTTP servers are today. This perspective boosted the development, under W3C 
driven community processes, of a number of robust metadata and ontology standards. Those 
standards play the role, which SQL had for the development and spread of the relational DBMS. 
Although designed for Semantic Web, these standards face increasing acceptance in areas like 
Enterprise Application Integration and life sciences. 

In the OWLIM-speak (and, therefore, throughout this document), the term “semantic repository” is 
used to refer to a system for storage, querying, and management of structured data with respect to 
ontologies. At present, there is no single well-established term for such engines. Weak synonyms are: 
reasoner, ontology server, metastore, semantic/triple/RDF store, database, repository, knowledge 
base. The different wording usually reflects a somewhat different approach to implementation, 
performance, intended application, etc.. Introducing the term “semantic repository”, we are trying to 
cover the core functionality offered by most of these tools. 

Semantic repositories can be used as a replacement for the database management systems (DBMS), 
offering easier integration of diverse data and more analytical power. In a nutshell, a semantic 
repository can dynamically interpret metadata schemata and ontologies, which define the structure 
and the semantics related to the data and the queries. Compared to the approach taken in the 
relational DBMS, this allows for easier changing and combining of data schemata and automated 
interpretation of the data. The latter means that, for example, given a simple ontology, a semantic 
repository can return a mobile operator in the UK, when queried for telecom companies in Europe. 

3.2 Introduction to Sesame 

Sesame is a system/framework for storing, querying and reasoning with RDF data. It is implemented 
in Java by Aduna as an open source project and includes various storage back-ends (memory, file, 
database), query languages, inferencers, and client-server protocols.  

There are two uses of Sesame:  

 as an RDF/RDFS database 

 as a Java library for an application designed to work with RDF internally  

Sesame enables you to parse, interpret, query and store this kind of structured information. 
Depending on what your preference is, you can embed that information in your own application or in 
a separate database (which can even reside on a remote server). In other words, Sesame provides 
application developers with the functionality they need to process RDF.   

Sesame supports the SPARQL RDF query language, which, as mentioned earlier, is the recommended 
standard of the W3C, and SeRQL (Aduna’s own query language). It also supports most popular RDF 
file formats and query result formats.  

Sesame offers a JBDC-like user API, streamlined system APIs and a RESTful HTTP interface. Various 
extensions are available or being under development by third parties. 
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Currently in version 2.X, Sesame is completely targeted at Java 5. All APIs use Java 5 features such as 
typed collections and iterators. Sesame version 2.1 added support for storing RDF data in relational 
databases. The supported relational databases are MySQL, PostgreSQL, MS SQL Server, and Oracle. 
As of version 2.2, Sesame also includes support for Mulgara (a native RDF database). 

3.2.1 Sesame Architecture 

A schematic representation of Sesame's architecture is shown in Figure 4. Following is a brief 
overview of the main components.  

 

Figure 4 - Sesame's  architecture - a schematic representation 

Sesame is independent of the actual DataBase Management System (DBMS) that stores the RDF data. 
It has no DBMS of its own but interfaces to an outside DBMS through its Storage And Inference Layer 
(SAIL). The SAIL is a single layer that carries all the necessary DBMS-specific code for Sesame. It is 
an application programming interface (API) that offers RDF-specific methods to its clients and 
translates these methods to calls to its specific DBMS. 

Considering the large variety of DBMSs in existence, this is a very flexible solution allowing the RDF 
data to be stored in numerous ways depending on the particular DBMS chosen and this choice can be 
based on what the best approach for the particular application is.  

Sesame’s functional modules are clients of the SAIL API. Currently, there are three such modules: the 
Query module (which runs the RQL query engine), the RDF Admin module and the RDF Export 
module.  

© Copyright 2009, Ontotext Lab, Sirma Group Corp. 



OWLIM Primer    Page 26 

 
Depending on the environment in which it is deployed, different ways to communicate with the 
Sesame modules may be desirable. For example, communication over HTTP may be preferable in a 
Web context, but in other contexts, protocols such as Remote Method Invocation (RMI) or the Simple 
Object Access Protocol (SOAP) (see [2]) may be more suited. In order to allow maximal flexibility, the 
actual handling of these protocols has been placed outside the scope of the functional modules. 
Instead, protocol handlers are provided as intermediaries between the modules and their clients, each 
handling a specific protocol.  

The use of the SAIL and the protocol handlers makes Sesame a generic architecture for RDFS storage 
and querying, rather than just a particular implementation of such a system. Adding additional 
protocol handlers makes it easy to connect Sesame to different operating environments. As a result, 
Sesame's architecture is extensible and adaptable – it is possible to use various kinds of repositories 
and to add additional modules or protocol handlers as well. [5] 

3.2.2 The SAIL API 

The SAIL API is a set of Java interfaces that has been specifically designed for storage and retrieval of 
RDFS-based information. The main characteristic features of the SAIL are as follows: 

 It is the basic interface for storing/retrieving/deleting RDF and RDFS to/from (persistent) 
repositories. 

 It abstracts from the actual storage mechanism: it could be applicable to RDBMSs, file 
systems, or in-memory storage, for example. 

 It can be used on low-end hardware like PDAs, but also offers enough freedom for 
optimizations to handle huge amounts of data efficiently on e.g. enterprise-level database 
clusters. 

 It is extendable to other RDF-based languages like DAML+OIL. 

 It is possible to put multiple SAILs on top of each other. The SAIL at the top can perform 
some action when the modules make calls to it, and then forward these calls to the SAIL 
beneath it. This process continues until one of the SAILs finally handles the actual retrieval 
request, propagating the result back up again. 

 It caches all schema data in a dedicated data structure in main memory. This is a good 
solution because the schema data is often very limited in size and is requested very 
frequently, while, at the same time, it is the most difficult to query from a DBMS because of 
the transitivity of the subClassOf and subPropertyOf properties. (This schema-caching 
SAIL can be placed on top of some other SAIL(s), handling all calls concerning schema data. 
The rest of the calls are forwarded to the underlying SAIL.) 

 It handles concurrency. Since any given RQL query is broken down into several operations on 
the SAIL level, it is important to preserve repository consistency over multiple operations. The 
SAIL selectively blocks and releases read and write access to repositories, on a first come first 
serve basis. This setup allows for supporting concurrency control for any type of repository. 

Other proposals for RDF APIs are currently under development. The most prominent of these are the 
Jena toolkit and the Redland Application Framework. The SAIL shares many characteristics with both 
approaches. 

An important difference between these two proposals and SAIL, is that the SAIL API specifically deals 
with RDFS on the retrieval side: it offers methods for querying class and property subsumption, and 
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domain and range restrictions. In contrast, both Jena and Redland focus exclusively on the RDF triple 
set, leaving interpretation of these triples to the user application. In SAIL, these RDFS inferencing 
tasks are handled internally. The main reason for this is that there is a strong relationship between 
the efficiency of the inferencing and the actual storage model being used. Since any particular SAIL 
implementation has a complete understanding of the storage model (e.g. the database schema in the 
case of an RDBMS), this knowledge can be exploited to infer, for example, class subsumption more 
efficiently. 

Another difference between SAIL and other RDF APIs is that SAIL is considerably more lightweight: 
only four basic interfaces are pre-defined, offering basic storage and retrieval functionality and 
transaction support, but not much beyond that. The reason for this is that in some applications such 
minimality may be preferable to an API that has more features, but is also more complex to 
understand and implement. 

The current Sesame system offers several implementations of the SAIL API. The most important of 
these is the SQL92SAIL, which is a generic implementation for SQL92 [21]. This allows for connecting 
to any RDBMS while having to re-implement as little as possible. In the SQL92SAIL, only the 
definitions of the datatypes (which are not part of the SQL92 standard) have to be changed when 
switching to a different database platform. The SQL92SAIL features an inferencing module for RDFS, 
based on the RDFS entailment rules as specified in the RDF Model Theory [17]. This inferencing 
module computes the schema closure of the RDFS being uploaded, and asserts these implicates of the 
schema as derived statements. For example, whenever a statement of the form (foo, rdfs:domain, 
bar) is encountered, the inferencing module asserts that (foo, rdf:type, property) is an implied 
statement. The SQL92SAIL has been tested in use with several DBMSs, including PostgreSQL8 and 
MySQL9. [5] 
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4 Introduction to OWLIM 
OWLIM is a high-performance semantic repository, implemented in Java and packaged as a Storage 
and Inference Layer (SAIL) for the Sesame RDF database. OWLIM is based on Ontotexts’s TRREE – a 
native RDF rule-entailment engine. The supported semantics can be configured through rule-set 
definition and selection. The most expressive pre-defined rule-set combines unconstrained RDFS and 
OWL Lite. Custom rule-sets allow tuning for optimal performance and expressivity. OWLIM supports 
RDFS (page 11), OWL DLP (page 20), OWL Horst (page 21), and most of OWL Lite (page 20). 

The two major varieties of OWLIM are SwiftOWLIM and BigOWLIM. In SwiftOWLIM, reasoning and 
query evaluation are performed in-memory, while, at the same time, a reliable persistence strategy 
assures data preservation, consistency, and integrity. BigOWLIM is the “enterprise” variety: it deals 
with data and indices directly from on-disc or other file storage, which allows for highly improved 
scaling. In addition to that, BigOWLIM’s indices are specially designed to allow efficient query 
evaluation against huge volumes of data. SwiftOWLIM can manage millions of explicit statements on 
desktop hardware. On an entry-level server, BigOWLIM can handle billions of statements and serve 
multiple simultaneous user sessions. 

A principal limitation of the reasoning strategy adopted (forward-chaining) is the relatively slow delete 
operation. Uploading, reasoning, and query evaluation proceed extremely fast even against huge 
ontologies and knowledge bases. According to the limited evaluation data available, SwiftOWLIM is 
the fastest OWL Lite repository available, while BigOWLIM is the most efficient repository with 
reasoning support in the enterprise class. 

The key differences between the editions of OWLIM are discussed in “OWLIM Editions” on page 32 
and in the OWLIM presentation, [28]. The results form a number of benchmarks, as well as plenty of 
other performance evaluation and analysis information, are provided in [29]. 

4.1 Advantages of OWLIM 

One of the main advantages of OWLIM the in-memory reasoning implementation: the full content of 
the repository is loaded and maintained in the main memory, which allows for efficient retrieval and 
query answering. Although the reasoning is handled in-memory, the OWLIM SAIL offers a relatively 
comprehensive persistency and backup strategy. 

The persistency of OWLIM is implemented via N-Triples files. The repository can be split into several 
files. All these files except one are read-only; the writable file is considered as both the source from 
which the triples are loaded and the target where the new statements are stored. This backup 
strategy ensures that no loss of newly asserted triples can occur in cases of power failure or abnormal 
termination – the detailed description is presented in OWLIM User Guides. Although relatively simple, 
this strategy had proven to be very efficient and reliable over the years during which the 
RdfSchemaRepositoryV2 and OWLIM have been used as a semantic repository for different 
applications of the KIM platform (for details, see [22]). 

4.2 Limitations of OWLIM 

The limitations of OWLIM are related to its reasoning strategy. In general, the expressivity of the 
language supported cannot be extended in the direction of DL. The rule-engine behind OWLIM is 
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limited in expressivity by the Horn logic. The total materialization strategy has its obvious drawbacks, 
as discussed briefly in “Reasoning Strategies” on page 23 and in detail in [4]. For specific ontologies 
and KBs, the count of the implicit statements can appear to grow rapidly. What is even more 
important, the delete operation is really slow, which means that OWLIM is not suitable for applications 
where removal of data is a typical transaction. The most obvious disadvantage of the in-memory 
reasoning is that the size of the KB which can be handled is limited by the size of the available RAM.1  

4.3 OWLIM Interoperability and Architecture 

This topic provides information on several technical aspects related to the interoperability, the design 
and the behaviour of OWLIM. 

The inference is performed by the TRREE engine (see [39]), which applies total materialization (see 
“Reasoning Strategies” on page 23), i.e. it generates and caches the inferred closure – all implicit 
statements which can be entailed from the current state of the repository, through the currently active 
rule-set. The contents of the repository and the inferred closure are available in highly-optimized data 
structures in-memory for query evaluation and further inference. The inferred closure is updated 
(though inference) at the end of each transaction that modifies the repository.  

 

Figure 5 - OWLIM Usage and Relations to Sesame and TRREE 

OWLIM implements the SAIL interface of Sesame (refer to The SAIL API topic on page 26), so, it is 
integrated with all the facilities of Sesame, e.g. the query engines and the web UI. A user application 
can choose whether to use OWLIM directly, through the low-level SAIL interface, or through the 
higher-level functional interfaces of Sesame (see “Introduction to Sesame” on page 24). Users can 

                                                

1 Considering the currently available commodity hardware, OWLIM can handle millions of statements on desktop 
machines and above ten millions on an almost-entry-level server. 
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access the data stored in OWLIM through Sesame’s web user interface or through other tools 
integrated with Sesame (for instance, ontology editors like Protégé and TopBraid Composer). 

The easiest way to use OWLIM is in the so-called embedded mode, i.e. as a Java library. The 
distribution of OWLIM contains a RMI factory (CustomFactory), that allows the applications to 
access the SAIL layer of the repository over RMI. (Further details are provided in OWLIM User 
Guides.) The installation and configuration of OWLIM are discussed in “Installation and Configuration 
Overview” on page 37. More information on the various aspects of the Sesame specifications, its 
architecture and implementations can be found in “Introduction to Sesame” on page 24. 

4.3.1 Integration with Sesame 

OWLIM is a specific configuration for the Sesame RDF database (see “Introduction to Sesame” on 
page 24) and counts on it for various sorts of features and infrastructure, including, but not limited to, 
an extensive set of RDF and query language parsers. The fact that Sesame is one of the most mature 
and popular semantic repositories allows for easy adoption of OWLIM. SwiftOWLIM ver. 3 is packaged 
as a Storage and Inference Layer (SAIL) for Sesame v.2.x named OWLIMSchemaRepository; it 
implements the RdfSchemaRepository interface. More information related to various aspects of 
Sesame’s specification, architecture, and implementations can be found in [41].  

4.3.2 The TRREE Engine 

The TRREE is OWLIM’s database engine. TRREE (see [39]) stands for “Triple Reasoning and Rule 
Entailment Engine”. The TRREE performs reasoning based on forward-chaining of entailment rules 
over RDF triple patterns with variables. TRREE’s reasoning strategy is total materialization, as 
introduced in “Reasoning Strategies” on page 23. A departure from this strategy can be implemented 
in case of the so called “transitivity optimization” (see “Transitivity Optimization” on page 31). 

4.3.2.1 Rule Format and Semantics 

The rule format and the semantics enforced is analogous to R-entailment (see [37] and the Reasoning 
Strategies topic on page 23) with the following differences: 

 Free variables in the head (without binding in the body) are treated as blank nodes. This 
feature can be considered “syntactic sugar”. 

 Variable inequality constraints can be specified in the body of the rules, in addition to the 
triple patterns. This leads to lower complexity as compared to R-entailment. 

 the [cut] operator can be associated with rule premises, the TRREE compiler interprets 
it like the ! operator in Prolog. 

 Inconsistency rules are not supported, i.e. there is no specific mechanism to allow 
inconsistency checks. One can easily model these via regular rules which entail <X, 
rdf:type, owl:Nothing> statements, without affecting the complexity class; 

 Axioms can be provided as a set of statements, although those are not modelled as rules 
with empty bodies. 

The TRREE can be configured via “rule-sets” – sets of axiomatic triples and entailment rules, which 
determine the supported semantics. The implementation of TRREE relies on a compile stage, during 
which the rules are compiled into chunks of Java code that are post-processed and merged together 
to generate the main entry point for the inferencer.  
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The edition of TRREE used in SwiftOWLIM is referred to as “SwiftTRREE” and performs reasoning and 
query evaluation in-memory; the latter means that the full content of the repository is loaded and 
maintained in a proprietary representation in the main memory, which allows for rapid reasoning and 
retrieval. The TRREE edition used in BigOWLIM operates with data and index structures from a file 
storage. Its data structures are organized to allow query optimizations which improve the query 
evaluation performance with respect to big datasets dramatically, for instance on one standard tests 
BigOWLIM evaluates queries against 7 million statements three times faster than SwiftOWLIM, 
although it takes it two-three times more time to initially load the data. 

4.3.2.2 The Rule Language 

This language is almost identical with the R-Entailment defined by Horst; the major difference is that 
at present the TRREE provides no support of the R-Entailment's axiomatic triples and inconsistency 
rules. 

A rule-set file can have up to three sections named Prefices, Axioms, and Rules. The Rules  
section is mandatory; when the other sections exists, the sections must appear sequentially in the 
order in which they are listed here. 

 The Prefices section defines the common namespaces. 

 The Axioms section defines a set of axiomatic triples to be asserted by default into 
repository. These triples are usually used to describe the meta-level primitives used to define 
the schema, such as rdf:type, rdfs:Class, etc.. 

 The Rules section provides all rule definitions. Each definition consists of premises and 
corollaries that are RDF statements defined via a subject, predicate and object components. 
Any component can be a variable, a full URI or the short name for the URI. Constraints, too, 
can be used to state that the values of the variables in a statement must not be equal to 
some specific full URI (or its short name) or to the value of another variable within the same 
rule. 

4.3.2.3 Transitivity Optimization 

The language of the TRREE allows for entering of either single-line or multiple-line comments 
wherever necessary. The TRREE1 can operate in a special mode, in which it does not materialize 
implicit statements, inferred as “closure” of transitive, symmetric, or inverse properties2. In this mode, 
two of the rules related to the support of owl:TransitiveProperty, owl:inverseOf are 
skipped; “local” backward-chaining is used in their place to provide equivalent entailments without 
materialization. Following are the two rules which are searched for in the rule-set and omitted in this 
mode: 

Id: owl_invOf 
     x  p  y 
     p  <owl:inverseOf>  q 
    ------------------------------- 
     y  q  x 
 
Id: proton_TransitiveOver 
     p  <protons:transitiveOver>  q 

                                                

1 This transitivity optimization appears first in SwiftTRREE version 2.9. 

2 This mode is activated with the transitive parameter of OWLIM. 
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     x  p  y 
     y  q  z 
    ------------------------------- 
     x  p  z 

Inference and query answering is slower in this mode (as compared with the  ‘normal’ one, 
performing total materialization) since it effectively implements partial backward-chaining, which 
requires additional calculations and as well as maintenance of intermediate data structures. This 
strategy pays off in cases when long chains of resources are related through transitive properties. The 
inferred closure of such chain of n resources (connect through n-1 explicit statements) contains n(n-
1)/2 statements. In other words, the inferred closure grows in polynomial (quadratic) dependence on 
the length of the chain. The situation gets even worse when the transitive property is also symmetric 
or has an inverse one, as, the inferred closure of such chain doubles in size. 

4.4 OWLIM Editions 

OWLIM comes in two major OWLIM editions – SwiftOWLIM and BigOWLIM – and, additionally, in two 
versions depending on the supported version of Sesame. 

4.4.1 SwiftOWLIM and BigOWLIM 

The two major OWLIM editions – SwiftOWLIM and BigOWLIM – are identical in terms of usage and 
integration except for some minor differences in a few configuration parameters. The editions differ in 
the respective version of the TRREE engine they are based upon, but share the same inference and 
semantics (rule-compiler, etc.). 

SwiftOWLIM is designed for medium data volumes and prototyping. Its key features are: 

 reasoning and query evaluation performed in the main memory, so it keeps the major 
part of its indices there 

 persistence strategy that assures data preservation and consistency 

 extremely fast loading of data (including inference and storage) 

BigOWLIM is suitable for massive volumes of data and heavy query loads. It is designed as an 
enterprise-grade database management system. It features: 

 file-based indices (Enables it to scale to billions of statements even on desktop machines.) 

 query optimizations (Ensures fast query evaluations.) 

 optimized handling of owl:sameAs (identifier equality) (Boosts its efficiency for data 
integration tasks.) 

 

Parameter  SwiftOWLIM BigOWLIM 

Scale 
(Mill. of explicit St.) 

10 MSt, using 1.6 GB RAM 
100 MSt, using 16 GB RAM 

130 MSt, using 1.6GB 
1068 MSt, using 12GB 

Processing speed 
(load+infer+store) 

30 KSt/s on notebook 
200 KSt/s on server 

5 KSt/s on notebook 
60 KSt/s on server 

Query optimization No Yes 
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SwiftOWLIM BigOWLIM Parameter  

Persistence Back-up in N-Triples Binary data files and indices 

Efficient owl:sameAs No Yes 

Licence and 
Availability 

Open-source under LGPL; 
Uses SwiftTRREE that is free, 
but not open-source 

Commercial. 
Research and evaluation copies 
provided for free 

Table 2 - Comparison between SwiftOWLIM and BigOWLIM 

4.4.2 Versioning of OWLIM  

OWLIM’s versions are designed and tailored to meet as efficiently as possible the wide range of 
requirements towards RDF databases and reasoning engines. The following table summarizes the 
major differences between the versions that are currently supported. 

 

Feature  
 

OWLIM Edition and 
version number  

Sesame 
version 

SPARQL
support 

Instant 
initializ. 

owl:sameAs 
optimization 

Comment 

SwiftOWLIM 2.9.x 1.2.x – – – 

The fastest OWL 
database. Multi-
threaded inference, 
with transitive 
inference 
optimization. 

BigOWLIM 2.x 1.2.x – yes yes 

Optimal performance 
and scalability. The 
fastest query 
evaluation. Successor 
of 0.9.x. 

SwiftOWLIM 3.x 2.x.x yes yes – 
The fastest RDF 
machine with NG and 
SPARQL support. 

BigOWLIM 3.x 2.x.x yes yes yes 
Ultimate scalability 
and fast SPARQL 
evaluation. 

Table 3 - Comparison table of all OWLIM versions 

4.5 Supported Semantics 

OWLIM offers several predefined levels of entailment but allows also for customization of the 
supported semantics. The particular semantics to be used is specified (through the ruleset 
parameter, see the Configuration topic in the User Guide) for each specific repository instance. 
Applications, which do not need the complexity of the most expressive supported semantics, can 

© Copyright 2009, Ontotext Lab, Sirma Group Corp. 



OWLIM Primer    Page 34 

 
choose one of the lower levels, which will result in faster inference. The division of the rules into the 
different complexity levels is clearly indicated (through comments) in the rules.pie file. 

The semantics supported by OWLIM is highly configurable – the TRREE engine can be configured to 
work with not only with any of the several pre-defined rule-sets but also with a rule-set defined by the 
user. The complexity, and thus the speed, of the inference can vary considerably across different rule-
sets.  

4.5.1 Pre-Defined Rule Sets 

The pre-defined rule-sets are “nested” into each other so that each one is extending the preceeding 
one ; following is a list ordered by increasing complexity: 

 empty: no reasoning, i.e. OWLIM operates as a plain RDF store; 

 rdfs: supports the standard theoretic RDFS semantics model; 

 owl-horst: OWL dialect close to OWL Horst; the differences are discussed in “OWL 
Compliance” below. 

 owl-max: a combination of most of the semantics of OWL Lite in combination with full 
compatibility with (support for) RDFS. 

Additional variety of the supported level of semantics can be brought in through the so-called 
partialRDFS modification of the predefined rule-sets. It is discussed in OWLIM User Guides. Define 
custom rule-sets is always an option, as described in “Creating Custom Configurations” on page 38. 
The rule-set to be used for a specific repository is defined through the ruleset parameter (For 
details, refer to OWLIM User Guides).  

The richest rule-set (owl-max) encompasses the model theoretic semantics of RDFS, as defined in 
[18], extended with support for most of the OWL primitives as explained in the OWL Compliance topic 
below. There are certain limitations to the support of these primitives. They are discussed in OWLIM 
User Guides. 

4.5.2 OWL Compliance 

Regarding OWL compliance, OWLIM supports a dialect (rule-set owl-horst) similar to OWL Horst, as 
defined in [37] and introduced in “OWL Horst” on page 21. The OWLIM support of OWL with the 
owl-max rule-set and without partialRDFS optimizations is as follows: 

 OWLIM supports the full RDFS semantics without constraints or limitations, apart from the 
entailments related to typed literals (known as D-entailment). For instance, meta-classes (and 
any arbitrary mixture of class, property, and individual) can be combined with the supported 
OWL semantics. 

 The supported OWL semantics does not cover the full OWL Lite. The OWL semantics 
supported by OWLIM, combined with unconstrained RDFS semantics, constitutes a language 
which is not comparable to OWL Lite – its full compatibility with RDFS makes it more 
expressive than OWL Lite in some aspects.  

 OWLIM supports a language richer than OWL DLP; 

The differences between OWL Horst, [37], and the OWL dialects supported by OWLIM through owl-
horst and owl-max rule-sets can be summarized as follows: 
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 OWLIM does not provide the extended support for typed literals, introduced with the D*-

entailment extension of the RDFS semantics. Although such support is conceptually clear 
and easy to implement, it is our understanding that the performance “penalty” is too high 
for most applications. One can easily implement adapt the rules defined for this purpose 
by ter Horst and put them in a customized rule-set (see “Custom Rule-Sets” on page 35 
and OWLIM User Guides). 

 There are no inconsistency rules. 

 Few more OWL primitives are supported by OWLIM (rule-set owl-max). These are listed 
in OWLIM User Guides. 

 There is extended support for schema-level (T-Box) reasoning in OWLIM. 

Even though the concrete rules pre-defined in OWLIM differ from those defined in OWL Horst in [37], 
the complexity and decidability results reported for R-entailment are relevant for TRREE and OWLIM. 
Put it more precisely, the rules in the owl-host  rule-set, do not introduce new B-Nodes, which 
means that R-entailment with respect to them takes polynomial time. In KR terms, this means that 
the owl-horst inference within OWLIM is tractable.  

OWLIM implements reasoning with lesser complexity, as compared to other formalisms, which 
combine DL ontologies with rules. In addition, it puts no constraints with respect to meta-modelling.  

The correctness of the support of the OWL semantics (for those primitives which are supported) is 
checked against the normative Positive and Negative-entailment OWL test cases, [7]. These checks 
are available as JUnit tests together with the OWLIM distribution; they are documented in [29] and 
can also be used as sample applications. 

4.5.3 PROTON Primitives 

Besides the RDF- and OWL-specific primitives, the rules, predefined in OWLIM, provide semantics for 
primitives from the PROTON ontology, [31]. The most important example is the rule that supports 
transitiveOver property, which is defined as follows: 

Id: proton_TransitiveOver 
     p  <protons:transitiveOver>  q 
     x  p  y 
     y  q  z 
    ------------------------------- 
     x  p  z  

This property is used later on for alternative definition of the semantics of some RDFS primitives. 
These definitions support semantics, equivalent to the one given, for instance, with the normative 
axioms and rules in [18], but allow for better inference speed. They have no “side-effects” on the 
entailment, unless the corresponding PROTON properties are being used by the application. 
transitiveOver is also used for definition of the semantics of some of the OWL primitives.  

The rules supporting the semantics of the PROTON primitives are clearly marked in the rules.pie 
file. 

4.5.4 Custom Rule-Sets 

OWLIM has an internal rule compiler that could be used to configure the TRREE with a custom set of 
inference rules and axioms. The user may define a proprietary rule-set in a *.pie file (e.g. 
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MySemantics.pie). The easiest way to come up with your own rule-set is to start modifying one of the 
.pie files that were used to build the precompiled rule-sets. (All pre-defined *.pie files are included in 
the distribution.) The syntax of the .pie files is easy to follow; the rule-sets utilize Java syntax. 
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5 Installation and Configuration Overview 
OWLIM is a specific plug-in (namely, a storage and inference layer, SAIL) for Sesame. To configure, 
run, and use OWLIM means to do so for a specific configuration of Sesame. Please, refer to the online 
documentation of Sesame, [41]. Instructions and samples of how an application uses Sesame in 
embedded mode can be found there, too.  

As different versions of OWLIM are compliant with different versions of Sesame, code and 
configuration files samples are not provided here but in OWLIM User Guides. 

5.1 Contents of the Distribution Package 

There are minor differences between the distributions of the different version of OWLIM – those are 
commented accordingly in the OWLIM User Guides.  

Licensing information about the corresponding version of OWLIM and Sesame can be found in files 
licence.txt and licence_sesame.txt, respectively, in the main folder of the distribution. The 
distributions of OWLIM include also: 

lib folder  The binary executable version of OWLIM as a JAR (Java library) files. 

ext folder All required third party libraries are placed there for user’s convenience. The libraries 
of the corresponding version of Sesame could be downloaded separately from  
http://www.openrdf.org/. The folder also contains a copy of Leigh University 
Benchmark library (lubm.jar) and also JUnit v3.8.1. They are needed for the execution 
of the respective tests. 

doc folder OWLIM user documentation including this document and tests documentation. 

src folder The Java sources of OWLIM and the RMI factory. 

test folder Contains sources, data, and documentation of the unit tests and benchmarks, 
documented in [29].  

standalone A folder with the scripts for running OWLIM as a standalone server enabled for RMI 
access.  

*.pie files Contain description of the built-in rule-sets. 

getting-started folder  
A folder with a an example setup for an application using OWLIM, with all required 
auxiliary files and folders. Can be used as a template for creating custom OWLIM 
configurations. 

wordnet A folder with copy of the getting-started template customized for loading the 
RDF/OWL representation of WordNet 2.0 and performing a set of queries against it. 

setvars  script (.cmd or .sh, respectively for Windows or Linux): a batch file defining several 
environment variables used by the scripts that run the test cases and the getting-
started application. It should be customized for each individual installation as it 
determines the Java machine to be started and the path to all the JAR files used 
including those of OWLIM and Sesame. 
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5.2 How to Get Started Quickly 

OWLIM comes equipped with an example application setup (the getting-started folder, see the 
Contents of the Distribution Package topic above), which can be used as a template for bootstrapping 
applications that use OWLIM. The sample code of this application performs a sequence of typical 
operations: initialization of the repository, loading a KB into it, performing queries and obtaining 
results, and making modifications. This application template comes packed with: 

 source code and compiled class files 

 sample ontology and data files  

 Sesame configuration file 

 scripts which invoke the application 

One easy way for setting up an application using OWLIM is to copy the getting-started folder 
and modify the contents as necessary. The easiest way to learn how to use it is to read the source 
code of the GettingStarted class, located in the src folder; the code is commented extensively. 
The configuration parameters are in the owlim.properties file in getting-started folder; 
these parameters can be changed easily. For details on the configuration parameters and how the 
sample application operates, refer to OWLIM User Guides. 

5.3 Creating Custom Configurations 

There are three main ways to create a custom configuration: 

 You can change the semantic repository you operate on. 

 You can change the query language. 

 You can modify the rule-set, either partially (by adding, removing, or modifying statements) 
or completely (including changing the ontology language and the inference logic). 

Further details on this subject are available in OWLIM User Guides. 
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6 Glossary of Terms 
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