

Semantic Repository for RDF(S) and OWL

SwiftOWLIM/BigOWLIM
versions 2.9÷3.X, 25 July 2009

OWLIM Primer

Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page i

Table of contents

1 Foreword .. 1

2 About This Document... 2

2.1 OWLIM User Documentation – Overview .. 2

2.2 Purpose, Intended Readership and Overview, of This Document....................... 3

2.3 How to Use This Document?.. 4

2.4 Credits and Licensing .. 4

3 Background Knowledge ... 6

3.1 Introduction to Semantic Web Knowledge Management Concepts..................... 6
3.1.1 Resource Description Framework (RDF) .. 6
3.1.2 RDF Schema (RDFS) ..11
3.1.3 Ontologies and Knowledge Bases ..14
3.1.4 Logic, Inference, and Ontology Languages...................................17
3.1.5 Web Ontology Language (OWL) and Its Dialects...........................19
3.1.6 Querying Languages ..21
3.1.7 Reasoning Strategies..23
3.1.8 Semantic Repositories ..24

3.2 Introduction to Sesame... 24
3.2.1 Sesame Architecture ..25
3.2.2 The SAIL API...26

4 Introduction to OWLIM.. 28

4.1 Advantages of OWLIM .. 28

4.2 Limitations of OWLIM.. 28

4.3 OWLIM Interoperability and Architecture .. 29
4.3.1 Integration with Sesame...30
4.3.2 The TRREE Engine ...30

4.4 OWLIM Editions.. 32
4.4.1 SwiftOWLIM and BigOWLIM..32
4.4.2 Versioning of OWLIM ...33

4.5 Supported Semantics .. 33
4.5.1 Pre-Defined Rule Sets ..34
4.5.2 OWL Compliance ...34
4.5.3 PROTON Primitives ..35
4.5.4 Custom Rule-Sets ..35

5 Installation and Configuration Overview... 37

5.1 Contents of the Distribution Package .. 37

5.2 How to Get Started Quickly ... 38

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page ii

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

5.3 Creating Custom Configurations ... 38

6 Glossary of Terms... 39

7 References.. 40

OWLIM Primer Page 1

1 Foreword
This book is the introductory document of the OWLIM’s set of user documents. OWLIM is the
Ontotexts’s database system for storing and making requests against structured data. It is packaged
as a Storage and Inference Layer (SAIL) for the Sesame RDF framework. OWLIM is based on TRREE –
a native RDF database and rule-entailment engine. If you need a quick overview of OWLIM or a
download link to its latest releases, please visit OWLIM’s product page at
http://www.ontotext.com/owlim/index.html.

At present, OWLIM has become the undisputed leader among structured data repositories for its
unsurpassed processing capacity (currently it supports non-trivial OWL inference against 3 Billion
triples and successful loading of 12 billion triples!) and speed (like loading and materializing LUBM(50)
within 42 sec. on a desktop machine, delivering unmatched throughput of 161 KSt./sec).

{няколко думи за историята на OWLIM тук}

The purpose of this book is to provide you with a conceptual overview of OWLIM – that is, with some
general information about its structure and functioning – as well as with the instructions needed to
install the system. In addition to that, a good portion of this document is geared towards introducing
the basics of the Semantic Web1, the knowledge of which is an indispensable prerequisite for the
successful adoption of OWLIM (or any other structured data repository, for that matter).

1 For a detailed explanation of the Semantic Web, refer to http://www.w3.org/2001/sw/

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

http://www.openrdf.org/
http://www.ontotext.com/trree/index.html
http://www.ontotext.com/owlim/index.html
http://www.w3.org/2001/sw/

OWLIM Primer Page 2

2 About This Document
This chapter briefly explains the purpose and the scope of this document, its place in the OWLIM user
documentation set, and provides some suggestions for efficient use.

2.1 OWLIM User Documentation – Overview

OWLIM comes in two editions – SwiftOWLIM and BigOWLIM, and the user documentation set for each
of them comprises several documents. Except for the current document, which is common for both
editions, all other documents are edition-specific. (See Table 1 - The OWLIM User Documentation
Set.)

OWLIM
Editions

Swift-
OWLIM

 Big-
OWLIM

Document
Type Document Description

 OWLIM Primer

tutorial This document. See “Purpose,
Intended Readership and
Overview, of This
Document”.

 SwiftOWLIM
Fact Sheet

 BigOWLIM
Fact Sheet

reference An excerpt from the User Guide
for the respective OWLIM edition
with the following factual
information: succinct product
description and installation
instructions, licensing, release
notes, requirements, supported
standards, and download and
support links.

 SwiftOWLIM
User Guide

 BigOWLIM
User Guide

manual Provides in-depth explanation of
the respective OWLIM edition
from the user perspective.
Features detailed installation,
configuration, customization and
usage instructions.

 D

oc
u

m
en

t
Ti

tl
es

 SwiftOWLIM
Tests and
Benchmarks

 BigOWLIM
Tests and
Benchmarks

reference Describes the tests with which
the respective OWLIM edition is
being distributed.

Table 1 - The OWLIM User Documentation Set

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 3

In this document, the SwiftOWLIM User Guide and the BigOWLIM User Guide are referred to
collectively as “OWLIM User Guides” in cases where it is not necessary to distibguish between the
editions of OWLIM.

2.2 Purpose, Intended Readership and Overview, of This Document

This document is designed for database specialists who need to implement the OWLIM semantic
database in an information retrieval system or to use OWLIM as a stand-alone application for storing
and making requests against structured data. The document is also useful for system administrators
who need to support and maintain an OWLIM-based system but have no prior knowledge of OWLIM.

This document presumes that the reader is a database specialist but not an expert in semantic
database systems, semantic information retrieval, or Semantic Web. He is expected to be able to draw
from his knowledge of relational databases; the required minimum of Semantic Web concepts and
related information is provided in the course of this book.

Understanding of XML would be beneficial as well, as it is the most widely used metadata description
language of the Web today and, for this reason, standardly used as a tool for illustrating the Semantic
Web concepts in the referencing literature, this book included.

The purpose of this document is three-fold:

1. To deliver a general overview of the OWLIM system and to make you acquainted with its
architecture and operational logic.

2. To introduce the Semantic Web and its concepts and to provide enough usable information so
that you could start using your OWLIM system practically unimpeded in case your Semantic
Web knowledge is currently limited.

3. To provide you with instructions on how to install OWLIM.

The first part of this document, “Background Knowledge,” provides, in succinct form, the general
conceptual information about the Semantic Web. Because there is a great deal of information about
the Semantic Web in existence both over the Internet and in print, the topics in this section basically
serve to check the required knowledge rather than go into details about the concepts being explained.
This is by necessity so because an in-depth discussion on these topics goes beyond the scope of this
product-related user document. However, on every subject, ample references are provided, so you
could explore a subject further if you feel the need to do so.

The second and the third parts deal with OWLIM itself. The second part, “Introduction to OWLIM”
gives you the basic information about OWLIM. It creates the necessary foundation for your OWLIM
knowledge so you could later get down to the specifics in the User Guide of your chosen OWLIM
edition and do your actual work with it.

Once you know what OWLIM is about and how it operates, part three, “Installation and Configuration
Overview” explains the installation package and procedure and shows you how to customize your
OWLIM configuration. Though this part already deals with OWLIM’s specifics, it is included here and
not in the User Guides because the installation procedure and configuration options are common for
all editions of OWLIM.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 4

2.3 How to Use This Document?

Reading the first part, “Background Knowledge” is optional depending on how familiar the Semantic
Web concepts are to you. If you are new to the Semantic Web, it is recommended to read this entire
section first and preferably check as many of the references as your time permits. If you have a
certain level of knowledge however, you might want to read the part selectively, just perusing what
you already know and paying more attention to the content that is new to you. And, of course, if you
consider yourself knowledgeable about the Semantic Web, you can skip the entire first part.

The second part, “Introduction to OWLIM” is a real “must-read”: it should be read wall-to-wall (all of
it) and sequentially (from the beginning to the end) without skipping any topics. You are expected to
cover this part before attempting to actually do anything with OWLIM.

Reading the third part, “Installation and Configuration Overview”, becomes necessary when you
decide to actually install OWLIM on your system, but reading it anyway can be a useful addition to
your OWLIM education.

The following formatting conventions are used in this book:

 Code examples are listed in typewriter-like font.

 The first occurrence of a term that is explained in the Glossary at the end of this book is
hyperlinked to its Glossary entry and is formatted like this.

 Other important terms, when first introduced, may be written in italics.

 Formulas, too, are always in italics.

 References to the list of the referred literature are given in square brackets, e.g. [3] means
“Refer to document #3 in the References section”.

2.4 Credits and Licensing

OWLIM benefits from the scalable architecture and numerous “basic” components of Sesame.

The development of OWLIM is partly supported by SEKT, TAO, TripCom, LarKC, and
other FP6 and FP7 European research projects.

The this document products discussed in it are copyrighted and subject to licensing as follows:

 © Copyright 2005-2009, Ontotext Lab, Sirma Group Corp.
135 Tsarigradsko Shosse, Sofia 1784, Bulgaria, http://www.ontotext.com.

 SwiftOWLIM is a free software, available under the GNU Lesser General Public License
(LGPL) version 2.1. One can redistribute and/or modify it freely under the terms of this
license.

 Licensing of the third-party libraries:

 Sesame, © Copyright Aduna b.v. Sesame, is an open-source library, available under
the LGPL.

 TRREE, © Copyright Ontotext Lab, Sirma Group Corp., is proprietary software owned
by Ontotext Lab. SwiftTRREE v2.9.1 is licensed for use free of charge as an integral
part of SwiftOWLIM v2.9.1. Re-distribution of TRREE in any form, except as part of
the original SwiftOWLIM distribution package, is strictly prohibited. Any form of
modification or reverse-engineering of TRREE is prohibited. SwiftTRREE is distributed

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

http://www.sekt-project.com/
http://www.tao-project.eu/
http://www.tripcom.org/
http://www.larkc.eu/
http://cordis.europa.eu/fp6/
http://cordis.europa.eu/fp7/
http://www.ontotext.com/research/
http://www.ontotext.com/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html

OWLIM Primer Page 5

together with SwiftOWLIM without warranty of any kind including, but not limited to
suitability for any particular purpose.

 All other trademarks mentioned in this document, if any, belong to their respective
owners.

Full licensing information is available at http://www.ontotext.com/owlim/licence.html, as well as in the
licence.txt file in the main folder in the distribution package.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

http://www.ontotext.com/owlim/licence.html

OWLIM Primer Page 6

3 Background Knowledge
The background knowledge you need to be able to use OWLIM comprises some basic Semantic Web
concepts and general understanding of the Sesame framework. This chapter provides introductions to
both.

3.1 Introduction to Semantic Web Knowledge Management Concepts

The Semantic Web is about presenting web-based data in machine-readable form so it could be
further processed and eventually presented to the user as some relevant and useful information with
as little human intervention in the process as possible. Retrieved in that way, this information content
may even include some knowledge that has not been explicitly available prior to that processing.

The ambition of the Semantic Web is to solve the most problematic issues that come with the spread
of the “standard” non-semantic (HTML-based or similar) Web and which result in high level of human
effort involved when it comes to finding and retrieving precise information in usable form. For
example, automated searches nowadays while being quite fast still have a lot to want in terms of
relevance and accuracy: of the thousands of matches typically returned, only a few point to truly
relevant content and some of this content may be berried deeply in the subsequent pages of the
results. All these issues highly reduce the value of the information received and of automation as a
means to obtain it. There are also problems related to synonymy and homonymy, the lack of
unification of the concepts, and many others.

The Semantic Web resolves this issues by adopting unique identifiers for the pieces of information
that are to be retrieved, as well as for the relationships between those pieces where such
relationships exist. These identifiers, called “Universal Resource Identifiers” (URIs) (a “resource” is any
retrievable piece of information, including the relationships these pieces have to each other) are
similar to Web pages URLs but do not necessarily have a web page or any kind of content: their sole
purpose is to uniquely identify an object and its relationships.

Having taken down, through the use of URIs, the ambiguity of the retrievable data, the Semantic Web
takes a step further and relates the individual pieces of data to the conceptual categories they belong
thus making it possible to turn the existing disarray of information into truly usable knowledge. This is
achieved by ontologies – hierarchical structures of concepts– and by bonding the individual pieces of
data to these concepts.

3.1.1 Resource Description Framework (RDF)

Notwithstanding its rapid growth and development, the World-Wide Web today is still largely
burdened by its original sin – its content cannot be interpreted by machines as far as meaning and
semantics are concerned. Machines cannot understand meaning, therefore they cannot understand
web content. For this reason, most attempts to retrieve some useful pieces of information from the
Web require a high degree of user involvement – manually retrieving information from multiple
sources (different Web pages), “digging” through multiple search engine results (where the useful
pieces of data are often berried many pages deep), comparing differently structured results sets of
data (most of them incomplete), and so on.

For the machine interpretation of semantic content to become possible, there are two prerequisites:

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 7

1. Every piece of useful information needs to be uniquely identified. (For example, if one and the

same person, named, say John Doe, owns a web site, authors articles on other sites, gives an
interview on another site, and, in addition to that, has profiles in a couple of social media like
Facebook and LinkedIn, the occurrences of his name in all those places should be related to
one and the same unique identifier.)

2. There must be a unified system of conveying and interpreting meaning that all automated
search agents and data storage applications could use.

One reasonable approach to this which, in the recent years, has become the backbone of the
Semantic Web as it currently is, is to embed the necessary machine-processable information into the
web content itself through the use of special meta-descriptors (meta-tagging) in addition to the
existing meta-tags that concern mainly the layout.

Within these meta tags, the resources (the pieces of useful information) can be uniquely identified in
the same manner in which Web pages are uniquely identified (by extending the existing URL system
into something more universal – a URI (Uniform Resource Identifier) system, just like in algebra
complex numbers extend the real numbers system). In addition to that, some simple programming-
logic-like conventions can be devised and agreed upon, so that resources can be described in terms of
properties and values (resources can have properties and properties can have values). The concrete
implementations of these conventions can be then embedded into the web pages (through meta-
descriptors again) thus effectively “telling” the processing machines things like “resource ‘John Doe’
has a [property] ‘web site’” and “this particular property ‘web site’ has the value of
‘www.johndoesite.com’.”

More precisely, there needs to be a system of machine-processable identifiers for identifying these
concrete implementations (called “statements”) and the individual elements of which the statements
are built (subject, predicate, or object) without any possibility of confusion with a similar-looking
identifier that might be used by someone else on the Web.

The Resource Description Framework (RDF) developed by the World Wide Web Consortium (W3C)
makes possible the automated semantic processing of information as outlined above. Although
frequently referred to as a “language”, RDF is mainly a data model. It is based on the idea that the
things being described have properties which have values, and that resources can be described by
making statements. RDF prescribes how to make statements about resources, in particular, Web
resources, in the form of subject-predicate-object expressions. The examples above (“resource ‘John
Doe’ has a [property] ‘web site’” and “this particular property ‘web site’ has the value of
‘www.johndoesite.com’”) are precisely this kind of statements. Because these expressions always
follow the triple subject-predicate-object structure, they are known as “triples” in RDF terminology.
(“Resource ‘John Doe’ [= subject] has [= predicate] a ‘web site’ [=object].”) [32]

The basic RDF concepts include Uniform Resource Identifiers, statements, and properties. They are
discussed in the respective topics that follow.

3.1.1.1 Uniform Resource Identifiers (URIs)

If we can think of a resource as an object, a “thing” we want to talk about, then the Uniform
Resource Identifier (URI) is its “ID card” which uniquely identifies it. Resources can be authors, books,
publishers, places, people, hotels, goods, articles search queries, and so on. In the Semantic Web,
every resource has a URI. A URI can be a URL or some other kind of unique identifier. Unlike URLs,
URIs do not necessarily enable access to the resource they describe, that is, in most cases they do not
represent actual web pages. For example, the string “http://www.johndoesite.com/aboutme.htm” if
used as a URL (Web link) is expected to take us to a Web page of the site providing information about

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 8

the site owner, the person John Doe; the same string however can serve as the URI uniquely
identifying that person on the Web irrespective of whether such a page exists or not.

Thus URI schemes can be defined not only for Web locations but also for such diverse objects as
telephone numbers, ISBN numbers, and geographic locations. There has been a long discussion about
the nature of URIs (see [40]), but we will not go into detail here. In general, we assume that a URI is
the identifier of a Web resource and, as such, can be used as either the subject or the object of a
statement. Once the subject is assigned a URI, it can be treated as a resource and further statements
can be made about it.

This idea of using URIs to identify “things” and the relations between them is quite important. This
choice gives us in one stroke global, worldwide, unique naming schemes. The use of such a scheme
greatly reduces the homonym problem that has plagued distributed data representation until now.

3.1.1.2 Statements – Object-Attribute-Value Triples

If we want to make the information in following sentence

“The web site www.johndoesite.com is created by John Doe.”

machine-accessible on the Semantic Web, the first thing we need to do is to express it the form of an
RDF statement, that is, an object-attribute-value triple:

“The web site www.johndoesite.com has a creator whose name is John Doe.”

Revised in this manner, the statement emphasizes some of its parts to illustrate that, in order to
describe something, there need to be ways to name, or identify, a number of things:

 the thing the statement describes (Web site “www.johndoesite.com”, in this case)

 a specific property (“creator”, in this case) of the thing the statement describes

 the thing the statement says is the value of this property (who the owner is), for the thing the
statement describes

The respective RDF terms for the various parts of the statement are:

 the subject is the URL “www.johndoesite.com”

 the predicate is the expression “has creator”

 the object is name of the owner

 the value of the object is the phrase “John Doe”

Next, each member of the subject-predicate-object triple should be presented through its URIs, for
example:

 the subject is “http://www.johndoesite.com”

 the predicate is “http://purl.org/dc/elements/1.1/creator” (this is according to a particular RDF
Schema (see “RDF Schema (RDFS)” on page 11), namely, the Dublin Core Metadata Element
Set; refer to “Sharing Vocabularies” (page 13) and “Dublin Core Metadata Initiative” (page 13)
for details)

 the object is “http://www.johndoesite.com/aboutme” (may not exist as an actual web page)

Note that in this version of the statement, instead of identifying the creator of the web site by the
character string “John Doe”, we used a URI, namely “http://www.johndoesite.com/aboutme”. An
advantage of using a URI in this case is that the identification of the statement’s subject can be more

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 9

precise. That is, the creator of the page is neither the character string “John Doe”, nor any one of the
thousands of people with that name, but the particular John Doe associated with that URI (whoever
created the URI defines the association). Moreover, since there is a URI to refer to John Doe, he is
now a full-fledged resource and additional information can be recorded about him, simply by adding
additional RDF statements with John’s URI as the subject.

What we basically have now is a the logical formula P(x, y), where the binary predicate P relates the
object x to the object y and we may think of this formula as written in the form (x, P, y)1. Therefore,
we can describe the statement as

<http://www.johndoesite.com> <http://purl.org/dc/elements/1.1/creator>
<http://www.johndoesite.com/aboutme>

Now this is quite a clumsy notation, so there is a convention in RDF for an abbreviated way of
describing statements. It uses a shorthand way of writing triples (the same shorthand is also used in
the RDF specifications). This shorthand employs an XML qualified name (or QName) without angle
brackets as an abbreviation for a full URI reference. A QName contains a prefix that has been
assigned to a namespace URI, followed by a colon, and then a local name. The full URI reference is
formed from the QName by appending the local name to the namespace URI assigned to the prefix.
So, for example, if the QName prefix “foo” is assigned to the namespace URI
“http://example.com/somewhere/”, then the QName “foo:bar” is shorthand for the URI
“http://example.com/somewhere/bar”.

In our example, we can define the namespace “jds” for “http://www.johndoesite.com” and use the
existing in the Dublin Core Metadata namespace “dc” for “http://purl.org/dc/elements/1.1/.” So the
shorthand form of the statement is going to be:

jds: dc:creator jds:aboutme

The triple nature of the RDF statements naturally leads to representing them as graphs. (The RDF’s
graph model is defined in [34].) In this notation, a statement is represented by:

 a node for the subject
 a node for the object
 an arc for the predicate, directed from the subject node to the object node.

So the RDF statement above would be represented by the graph shown in Figure 1:

 Figure 1 - Graphic representation of a triple

1 In fact, RDF offers only binary predicates (properties). If more complex relationships are to be defined, this is
done through sets of multiple RDF triples.

http://www.johndoesite.com/

http://purl.org/dc/elements/1.1/creator

http://www.johndoesite.com/aboutme

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 10

This kind of graph is known in the artificial intelligence community as a “semantic net”. [32]

In order to represent RDF statements in a machine-processable way, RDF uses mark-up languages,
namely (and almost exclusively) the Extensible Mark-up Language (XML)1. XML was designed to allow
anyone to design their own document format and then write a document in that format. RDF defines
a specific XML mark-up language, referred to as RDF/XML, for use in representing RDF information
and for exchanging it between machines. Written in RDF/XML, our example will look as follows:

<?xml version="1.0" encoding="UTF-16"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:jds="http://www.johndoesite.com/">

<rdf:Description rdf:about="http://www.johndoesite.com/">
<dc:creator rdf:resource="jds:aboutme">

</rdf:Description>

</rdf:RDF>

Note that RDF/XML uses the namespace mechanism of XML, but in an expanded way. In XML,
namespaces are only used for disambiguation purposes. In RDF/XML, external namespaces are
expected to be RDF documents defining resources, which are then used in the importing RDF
document. This mechanism allows the reuse of resources by other people who may decide to insert
additional features into these resources. The result is the emergence of large, distributed collections
of knowledge.

Also observe that the rdf:about attribute of the element rdf:Description is, strictly speaking,
equivalent in meaning to that of an ID attribute, but it is often used to suggest that the object about
which a statement is made has already been “defined” elsewhere.2

Of course, there is much more to RDF/XML logic and syntax than we could possibly cover here. For a
discussion of the principles behind the modelling of RDF statements in XML (known as “striping”),
together with a presentation of the available RDF/XML abbreviations and other details and examples
about writing RDF in XML, see the (normative) RDF/XML Syntax Specification by the W3C, [33].

3.1.1.3 Properties

Properties are a special kind of resources: they describe relations between resources, for example
“written by”, “age”, “title”, and so on. Properties in RDF are also identified by URIs (in most cases,
these are actual URLs). Therefore, properties themselves can be used as the object in an object-
attribute-value triple (statement). This possibility is rather unusual for modelling languages and
therefore potentially confusing for modellers, but it offers great flexibility.

1 Because an abstract data model needs a concrete syntax in order to be represented and transmitted, RDF has
been given a syntax in XML. As a result, it inherits the benefits associated with XML. However, it is important to
understand that other syntactic representations of RDF, not based on XML, are also possible; XML-based syntax is
not a necessary component of the RDF model.

2 Strictly speaking, a set of RDF statements together simply forms a large graph, relating things to other things
through properties, and there is no such concept as “defining” an object in one place and referring to it
elsewhere. Nevertheless, in the serialized XML syntax, it is sometimes useful (if only for human readability) to
suggest that one location in the XML serialization is the “defining” location, while other locations state “additional”
properties about an object that has been “defined” elsewhere.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 11

3.1.1.4 Named Graphs

Basically, a named graph (NG) is a set of triples named by an URI. This URI can then be used outside
or within the graph to refer to it, [26]. Named Graphs reflect the idea that having multiple RDF graphs
in a single document or repository and naming them with URIs provides some further useful
functionality in addition to that of the standard RDF triples.

Named graphs represent an extension of the RDF data model, where quadruples <s,p,o,ng> are
used to define RDF multi-graph. This mechanism allows for handling provenance when multiple RDF
graphs are integrated in a single repository. For information on the semantics and the abstract syntax
of named graphs, refer to [6].

From the perspective of OWLIM, named graphs are important because the comprehensive support for
SPARQL (the most popular RDF query language and current W3C recommendation – see “SPARQL” on
page 22) requires NG support.

3.1.2 RDF Schema (RDFS)

While being a universal model that lets users describe resources using their own vocabularies, RDF
does not make assumptions about any particular application domain, nor does it define the semantics
of any domain. Is it up to the user to do so in RDF Schema (RDFS).

RDF Schema is a vocabulary description language for describing properties and classes of RDF
resources, with a semantics for generalization hierarchies of such properties and classes.1 Thus RDFS
makes semantic information machine-accessible, in accordance with the Semantic Web vision. RDF
Schema is a primitive ontology language. It offers certain modelling primitives with fixed meaning.

RDF Schema does not provide a vocabulary of application-specific classes. Instead, it provides the
facilities needed to describe such classes and properties, and to indicate which classes and properties
are expected to be used together (for example, to say that the property “JobTitle” will be used in
describing a class “Person”). In other words, RDF Schema provides a type system for RDF.

The RDF Schema type system is similar in some respects to the type systems of object-oriented
programming languages such as Java. For example, RDFS allows resources to be defined as instances
of one or more classes. In addition, it allows classes to be organized in a hierarchical fashion; for
example a class “Dog” might be defined as a subclass of “Mammal” which itself is a subclass of
“Animal”, meaning that any resource which is in class “Dog” is also implicitly in class “Animal” as well.

RDF classes and properties, however, are in some respects very different from programming language
types. RDF class and property descriptions do not create a straightjacket into which information must
be forced, but instead provide additional information about the RDF resources they describe.

The RDFS facilities are themselves provided in the form of an RDF vocabulary; that is, as a specialized
set of predefined RDF resources with their own special meanings. The resources in the RDFS
vocabulary have URIs with the prefix http://www.w3.org/2000/01/rdf-schema# (conventionally
associated with the QName prefix rdfs). Vocabulary descriptions (schemas) written in the RDFS
language are legal RDF graphs. Hence, RDF software that is not written to also process the additional
RDFS vocabulary can still interpret a schema as a legal RDF graph consisting of various resources and
properties, but will not “understand” the additional built-in meanings of the RDFS terms. To

1 Please be aware of the fact that that the RDF Schema is conceptually different from the XML Schema even
though the common term “schema” suggests similarity. XML Schema constrains the structure of XML documents,
whereas RDF Schema defines the vocabulary used in RDF data models.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 12

understand these additional meanings, RDF software must be written to process an extended
language that includes not only rdf:vocabulary, but also rdfs:vocabulary, together with their
built-in meanings.

3.1.2.1 Describing Classes

A class can be thought of as a set of elements. Individual objects that belong to a class are referred to
as instances of that class. A class in RDFS corresponds to the generic concept of a type or category,
somewhat like the notion of a class in object-oriented programming languages such as Java. RDF
classes can be used to represent almost any category of thing, such as web pages, people, document
types, databases, or abstract concepts. Classes are described using the RDF Schema resources
rdfs:Class and rdfs:Resource, and the properties rdf:type and rdfs:subClassOf. The
relationship between instances and classes in RDF is defined using rdf:type.

An important use of classes is to impose restrictions on what can be stated in an RDF document using
the schema. In programming languages, typing is used to prevent nonsense from being written (such
as A+1, where A is an array, so we explicitly state that the arguments of + must be numbers). The
same is needed in RDF: imposing a restriction on the objects to which the property can be applied. In
mathematical terms, this is a restriction of the domain of the property.

3.1.2.2 Describing Properties

In addition to describing the specific classes of things they want to describe, user communities also
need to be able to describe specific properties that characterize those classes of things (such as
NumberOfBedrooms to describe an apartment). In RDFS, properties are described using the RDF
class rdf:Property, and the RDFS properties rdfs:domain, rdfs:range, and
rdfs:subPropertyOf.

All properties in RDF are described as instances of class rdf:Property. So a new property, such as
exterms:weightInKg, is described by assigning the property a URIref, and describing that resource
with an rdf:type property whose value is the resource rdf:Property, for example, by writing the
RDF statement:

exterms:weightInKg rdf:type rdf:Property .

RDFS also provides vocabulary for describing how properties and classes are intended to be used
together in RDF data. The most important information of this kind is supplied by using the RDFS
properties rdfs:range and rdfs:domain to further describe application-specific properties.

The rdfs:range property is used to indicate that the values of a particular property are instances of
a designated class. For example, if a site located on domain “example.com” and, for this reason using
the prefix “ex” as a shortcut for “http://www.example.com”, wanted to indicate that the property
ex:author had values that are instances of class ex:Person, it would write the RDF statements:

ex:Person rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:range ex:Person .

These statements indicate that ex:Person is a class, ex:author is a property, and that RDF
statements using the ex:author property have instances of ex:Person as objects.

The rdfs:domain property is used to indicate that a particular property applies to a designated
class. For instance, if example.com wanted to indicate that the property ex:author applies to
instances of class ex:Book, it would write the RDF statements:

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 13

ex:Book rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:domain ex:Book .

These statements indicate that ex:Book is a class, ex:author is a property, and that RDF
statements using the ex:author property have instances of ex:Book as subjects. [32]

3.1.2.3 Sharing Vocabularies

Just because RDFS provides you with the means of creating your own vocabularies, this does not
mean that you necessarily have to do so. In most cases, it is much better and easier to use an
existing vocabulary created by someone else who has already been describing a conceptual domain
same or similar as your own. Such publicly available vocabularies, called “shared vocabularies” are not
only cost-efficient to use, but they also reflect and promote the shared understanding of the described
concepts.

In the example used earlier, in the triple

jds: dc:creator jds:aboutme .

the predicate dc:creator, when fully expanded as a URI, is an unambiguous reference to the
creator attribute in the Dublin Core metadata attribute set (discussed further in the Dublin Core
Metadata Initiative topic), a widely-used set of attributes (properties) for describing information of this
kind. So this triple is effectively saying that the relationship between the web site (identified by
http://www.johndoesite.com/) and the creator of the site (a distinct person, identified by
http://www.johndoesite.com/aboutme.htm) is exactly the concept identified by
http://purl.org/dc/elements/1.1/creator. This way, anyone familiar with the Dublin Core vocabulary or
those who find out what dc:creator means (say, by looking up its definition on the Web) will know
what is meant by this relationship. In addition, based on this understanding, people can write
programs to behave in accordance with that meaning when processing triples containing the predicate
dc:creator.

Of course, this depends on increasing the general use of URIs to refer to things instead of using
literals (i.e., using URIs like jds:aboutme and dc:creator instead of character string literals like
“John Doe” and “creator”). Even then, RDF's use of URIs does not solve all identification problems
because, for example, people can still use different URIrefs to refer to the same thing. For this reason,
it is a good idea to have a preference towards using terms from existing vocabularies (such as the
Dublin Core) where possible, rather than making up new terms that might overlap with those of some
other vocabulary. Appropriate vocabularies for use in specific application areas are being developed all
the time, however, even when synonyms are created this way, the fact that these different URIs are
used in the commonly-accessible "Web space" provides the opportunity both to identify equivalences
among these different references and to migrate toward the use of common references.

3.1.2.4 Dublin Core Metadata Initiative

An example of a shared vocabulary that is readily available for reuse is The Dublin Core. The Dublin
Core is a set of "elements" (properties) for describing documents (and hence, for recording
metadata). The element set was originally developed at the March 1995 Metadata Workshop in
Dublin, Ohio, USA. The Dublin Core has subsequently been modified on the basis of later Dublin Core
Metadata workshops and is currently maintained by the Dublin Core Metadata Initiative.

The goal of the Dublin Core is to provide a minimal set of descriptive elements that facilitate the
description and the automated indexing of document-like networked objects, in a manner similar to a

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

http://dublincore.org/

OWLIM Primer Page 14

library card catalogue. The Dublin Core metadata set is suitable for use by resource discovery tools on
the Internet, such as the web crawlers employed by search engines. In addition, the Dublin Core is
meant to be sufficiently simple to be understood and used by the wide range of authors and casual
publishers who contribute information to the Internet.

Dublin Core elements have become widely used in documenting Internet resources (the Dublin Core
creator element has already been used in the earlier examples). The current elements of the Dublin
Core are defined in [10] and contain definitions for the following properties like “Title” (“A name given
to the resource.”), “Creator” (“An entity primarily responsible for making the content of the
resource.”), “Date” (“A date associated with an event in the life cycle of the resource.”), and “Type”
(“The nature or genre of the content of the resource.”).

Information using the Dublin Core elements may be represented in any suitable language (e.g., in
HTML meta elements). However, RDF is an ideal representation for Dublin Core information. The
following example taken from [19] uses Dublin Core by itself to describe an audio recording of a guide
to growing rose bushes:

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description rdf:about="http://media.example.com/audio/guide.ra">

 <dc:creator>Rose Bush</dc:creator>
 <dc:title>A Guide to Growing Roses</dc:title>
 <dc:description>Describes process for planting and nurturing
different kinds of rose bushes.</dc:description>
 <dc:date>2001-01-20</dc:date>

 </rdf:Description>
</rdf:RDF>

3.1.3 Ontologies and Knowledge Bases

In general, an ontology describes formally a domain of related concepts. It consists of (usually finite)
list of terms and the relationships between these terms. The terms denote important concepts
(classes of objects) of the domain. For example, in a company setting, staff members, managers,
company products, offices, and departments are some important concepts. The relationships typically
include hierarchies of classes. A hierarchy specifies a class C to be a subclass of another class C’ if
every object in C is also included in C’. For example, all managers are staff members.

Apart from subclass relationships, ontologies may include information

 such as properties (X is subordinated Y)

 value restrictions (only managers may head departments)

 disjointness statements (managers and general employees are disjoint)

 specifications of logical relationships between objects (every department must have at least
three staff members)

Ontologies are important because semantic repositories use ontologies as semantic schemata. This
makes automated reasoning about the data possible (and easy to implement) since the most essential
relationships between the concepts are built-in into the ontology. (For details on semantic repositories
refer to the Semantic Repositories topic on page 24.)

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 15

Formal knowledge representation (KR) is about building models1 of the world (of a particular state of
affairs, situation, domain or problem), which allow for automatic reasoning and interpretation. Such
formal models are achieved through the use of ontologies, whenever they (are intended to) represent
a shared conceptualization (e.g. a basic theory, a schema, or a classification). Ontologies can be used
to provide formal semantics (i.e. machine-interpretable meaning) to any sort of information:
databases, catalogues, documents, web pages, etc. Ontologies can be used as semantic frameworks:
the association of information with ontologies makes such information much more amenable to
machine processing and interpretation. This is because formal ontologies are represented in logical
formalisms, such as OWL, [8], which allow automatic inferencing over them and over datasets aligned
to them. An important role of ontologies is to serve as schemata or “intelligent” views over
information resources2. Thus they can be used for indexing, querying, and reference purposes over
non-ontological datasets and systems, such as databases, document and catalogue management
systems. Because ontological languages have a formal semantics, ontologies allow a wider
interpretation of data, i.e. inference of facts which are not explicitly stated. In this way, they can
improve the interoperability and the efficiency of the usage of arbitrary datasets.

An ontology can be characterized as comprising a 4-tuple3 is

O = <C,R,I,A>

where

 C is a set of classes representing concepts we wish to reason about in the given domain
(invoices, payments, products, prices,…).

 R is a set of relations (also referred to as properties or predicates) holding between
(instances of) those classes (Product hasPrice Price).

 I is a set of instances, where each instance can be an instance of one or more classes and
can be linked to other instances or to literal values (strings, numbers, …) by relations
(product23 compatibleWith product348; product23 hasPrice €170).

 A is a set of axioms (if a product has a price greater than €200, then shipping is free).

3.1.3.1 Classification of Ontlologies

The ontologies can be classified as light-weight or heavy-weight according to the complexity of the KR
language used. Light-weight ontologies allow for more efficient and scalable reasoning, but do not
possess the high predictive (or restrictive) power of the full-bodied concept definitions of heavy-
weight ontologies. The ontologies can be further differentiated according to the sort of
conceptualization that they formalize: upper-level ontologies model general knowledge, while domain-
and application ontologies represent knowledge about a specific domain (e.g. medicine or sport) or a
type of applications (e.g. knowledge management systems). Basic definitions regarding ontologies can
be found in [13], [14], [15], and [16].

1 The typical modelling paradigm is mathematical logic, but there are also other approaches, rooted in
information and library science. KR is a very broad term; here we only refer to one of its main streams.

2 Comments in the same spirit are provided in [14] also. This is also the role of ontologies on the Semantic Web.

3 A more formal and extensive mathematical definition of an ontology is given in [11]. The characterization
offered here is suitable for the purposes of our discussion, however.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 16

Finally, ontologies can be distinguished according to the sort of semantics being modelled and their
intended usage. The major categories from this perspective are:

 Schema-ontologies: ontologies which are close in purpose and nature to database and object-
oriented schemata. They define classes of objects, their appropriate attributes and
relationships to objects of other classes. A typical usage of such an ontology is defining and
managing of large sets of instances of the classes. Intuitively, a class in a schema ontology
corresponds to a table in an RDBMS; a relation – to a column; an instance – to a row in the
table for the corresponding class.

 Topic-ontologies: taxonomies which define hierarchies of topics, subjects, categories, or
designators. These have a wide range of applications related to classification of different
things (entities, information resources, files, web-pages, etc.) The most popular examples are
library classification systems and taxonomies, which are widely used in the KM field. Yahoo
and DMoz1 are popular large scale incarnations of this approach in the context of the Web. A
number of the most popular taxonomies are listed as encoding schemata in Dublin Core [9].

 Lexical ontologies: lexicons with formal semantics, which define lexical concepts2, word-
senses and terms. These can be considered as semantic thesaurus or dictionaries. The
concepts defined in such ontologies are not instantiated, rather they are directly used as
reference, e.g. for annotation of the corresponding terms in text. WordNet is the most popular
general purpose (i.e. upper-level) lexical ontology.

3.1.3.2 Knowlegde Bases

Knowledge base (KB) is a broader term than ontology. Similarly to an ontology, a KB is represented in
a KR formalism, which allows automatic inference. It could include multiple axioms, definitions, rules,
facts, statements, and any other primitives. In contrast to ontologies, however, KBs are not intended
to represent a shared or consensual conceptualization. Thus, ontologies are a specific sort of KB.
Many KBs can be split into ontology and instance data parts, in a way analogous to the splitting of
schemata and concrete data in databases. A broader discussion on the different terms related to
ontology and semantics can be found in [23].

3.1.3.2.1 PROTON

PROTON (see [38]) is a light-weight upper-level schema-ontology
developed in the scope of the SEKT project (see [35]). It is used in
the KIM system, [30] for semantic annotation, indexing and retrieval.
We will also use it for ontology-related examples within this section.
PROTON is encoded in OWL Lite and defines about 300 classes and
100 properties, providing good coverage of named entity types and
concrete domains (i.e. modelling of concepts such as people,
organizations, locations, numbers, dates, addresses, etc.), [31]. A
snapshot of the PROTON class hierarchy is given in Figure 2.

Figure 2 - A view of the top part

of the PROTON class hierarchy

1 http://www.yahoo.com and http://www.dmoz.org respectively.

2 We use ‘lexical concept’ here as some kind of a formal representation of the meaning of a word or a phrase. In
Wordnet, for example, lexical concepts are modelled as synsets (synonym sets), while word-sense is the relation
between a word and a synset.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

http://www.yahoo.com/
http://www.dmoz.org/

OWLIM Primer Page 17

3.1.4 Logic, Inference, and Ontology Languages

The topics that follow take a closer look at the logic that underlies the retrieval and manipulation of
semantic data and the kind of programming that supports it.

3.1.4.1 Logical Programming

All that semantic structuring of data discussed in the previous topics would be meaningless if there
weren’t in existence a special kind of programs that are capable of reading and “understanding” such
data and also of making deductions and inferences based on it. This kind of programs operate on the
premises of logic and are a product of a specialized kind of programming called “logical programming”
(LP).

In LP, a program consists of a collection of statements expressed as formulas in symbolic logic. (This
is in sharp contrast to declarative programming where a program is a set of commands that need to
be executed in a strict order.) There are rules of inference from logic that allow a new statement to be
derived from old ones, with the guarantee that if the old statements are true, so is the new one.

Because these rules of inference can be expressed in purely symbolic terms, applying them is the kind
of symbol manipulation that can be carried out by a computer. This is what happens when a computer
executes a logical program: it uses the rules of inference to derive new statements from the ones
given in the program, until it finds one that expresses the solution to the problem that has been
formulated. If the statements in the program are true, then so are the statements that the machine
derives from them, and the answers it gives will be correct.

The program can give correct answers only if the following two conditions are met:

1. The program must contain only true statements.

2. The program should contain enough statements to allow solutions to be derived for all the
problems that are of interest.

There must also be a reasonable time frame for the entire inference process. To this end, the
derivations the machine carries out should be fairly short, so that the machine could find answers
quickly, and this may affect the form in which definitions are made and properties stated in the
program. Nevertheless, each formula can be understood in isolation as a true statement about the
problem to be solved.

3.1.4.2 Predicate Logic

From a more abstract viewpoint, the subject of the previous topic is related to the foundation upon
which logical programming resides, which is logic, particularly in the form of predicate logic (also
known as “first order logic”). Some of the specific features of predicate logic render it very suitable for
making inferences over the Semantic Web, namely:

 It provides a high-level language in which knowledge can be expressed in a transparent way
and with a high expressive power.

 It has a well-understood formal semantics, which assigns an unambiguous meaning to logical
statements.

 There exist proof systems that can automatically derive statements syntactically from a set of
premises. Its proof systems are both sound (meaning that all derived statements follow
semantically from the premises) and complete (all logical consequences of the premises can
be derived in the proof system).

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 18

 It is possible to trace the proof that leads to a logical consequence. (This is because the proof

system is sound and complete.) In this sense, the logic can provide explanations for answers.

The languages of RDF and OWL (Lite and DL) can be viewed as specializations of predicate logic. One
reason for such specialized languages to exist is that they provide a syntax that fits well with the
intended use (in our case, Web languages based on tags). The other major reason is that they define
reasonable subsets of logic. This is important because there is a trade-off between the expressive
power and the computational complexity of certain logics: the more expressive the language, the less
efficient (in the worst case) the corresponding proof systems. As we stated, OWL Lite and OWL DL
correspond roughly to a description logic, a subset of predicate logic for which efficient proof systems
exist.

Another subset of predicate logic with efficient proof systems comprises the so-called rule systems
(also known as Horn logic or definite logic programs). A rule has the form

A1, . . . An B

where Ai and B are atomic formulas. In fact, there are two intuitive ways of reading such a rule:

 If A1, . . . , An are known to be true, then B is also true. Rules with this interpretation are
referred to as “deductive rules”.

 If the conditions A1, . . . , An are true, then carry out the action B. Rules with this
interpretation are referred to as “reactive rules”.

Both approaches have important applications. The deductive approach, however, is more relevant to
the purpose of retrieving and managing structured data. This is because it relates better to the
possible queries that one can ask, as well as to the appropriate answers and their proofs.

3.1.4.3 Description Logic

Description Logic (DL) historically evolved from a combination of frame-based systems and predicate
logic. Its main purpose is to overcome some of the problems with frame-based systems and to
provide a clean and efficient formalism to represent knowledge. The main idea of DL is to describe the
world in terms of “properties” or “constraints” that specific “individuals” have to satisfy. DL is based on
the following basic entities, [1]:

 Objects – Correspond to single “objects” of the real world such as a specific person, a table
or a telephone. The main properties of an object are that it can be distinguished from other
objects and that it can be referred to by a name. DL objects correspond to the individual
constants in predicate logic.

 Concepts – Can be seen as “classes of objects”. Concepts have two functions: on one hand,
they describe a set of objects, on the other hand they determine properties of objects. For
example the class “table” is supposed to describe the set of all table (-objects) in this world.
On the other hand it determines some properities of a table such as having four legs and a
flat horizontal surface hat you can lay something on. DL concepts correspond to one-place
predicates in predicate logic and to classes in frame-based systems.

 Roles – Represent relationships between objects. For example the role “lays on” may
determine the relationship between a book and a table, where the book lays on the table.
Roles also can be applied to concepts. However they do not describe the relationship between
the classes (concepts) but describe the properties of those objects that are members of that
classes.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 19

 Rules – In DL, rules take the form of “if condition x (left side), then property y (right side)”

and form statements that read as “if an object satisfies the condition on the left side, then it
has the properties of the right side”. So, for instance, a rule can state something like “if an
object is male and has atleast one child, then it is a father”.

The family of description logic system consists of many members that in particular differ with respect
to the constructs they provide. Not all of the constructs can be found in a single DL system and only
some of them are applicable to the area of natural language processing. For a listing of some concrete
constructs with a brief explanation of their semantics, refer to [1].

3.1.5 Web Ontology Language (OWL) and Its Dialects

In order to match the expectations for a useful heap of ontologies and structured metadata, the
Semantic Web requires scalable high-performance storage and reasoning infrastructure. The major
challenge towards building such an infrastructure is the expressivity of the underlying standards: RDF
(see [24]), RDFS (see [3]) and OWL (see [8]). Even though RDFS can be considered a simple KR
language, it is already a challenging task to implement a repository for it, which provides performance
and scalability comparable to those of relational database management systems (RDBMS). Going up
the stairs of the Semantic Web specifications stack, the challenges for the repository engineers are
getting more and more serious. Even the simplest dialect of OWL (OWL Lite) is a description logic
(DL) formalism with no algorithms enabling efficient inference and query answering over reasonably
scaled KBs. Furthermore, the semantics of OWL Lite and DL are incompatible with that of RDF(S), see
[12]. This causes lack of “backward compatibility”. Imagine the situation when an application, which
uses RDFS schemata and RDFS-compliant repository, should be “upgraded” to OWL. The evolution
should start with the replacement of the RDFS schemata with the OWL ontologies and adoption of a
repository supporting (the corresponding part of) OWL. Even the most direct translation (re-labelling
the rdfs:Class-es to owl:Class) of the schema, without adding further complexity, can lead to
different inference and to inconsistencies.

Figure 3 presents a simplified map of the expressivity or complexity1 of a number of OWL-related
languages, as well as their bias towards description logic (DL) and Logical Programming (LP, see
“Logical Programming” on page 17) based semantics. It presents the positioning of OWLIM’s
reasoning capabilities (the owl-max rule-set), as it is discussed in Ref. An extended discussion on the
topic can be found at: http://www.ontotext.com/inference/rdfs_rules_owl.html.

1 The diagram provides a very rough idea about the expressivity of the languages, based on the complexity of
entailment for them. Direct comparison between the different languages is impossible in many of the cases. For
instance, Datalog is not simpler than OWL DL, it just allows for a different type of complexity.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

http://www.ontotext.com/inference/rdfs_rules_owl.html

OWLIM Primer Page 20

Figure 3 - OWL Layering Map

3.1.5.1 OWL DLP

OWL DLP is a non-standard dialect, offering a promising compromise between expressive power,
efficient reasoning, and compatibility. It is defined in [12] as the intersection of the expressivity of
OWL DL and LP. In fact, OWL DLP is defined as the most expressive sub-language of OWL DL, which
can be mapped to Datalog. OWL DLP is simpler than OWL Lite. The alignment of its semantics to the
one of RDFS is easier, as compared to the Lite and DL dialects. Still, this can only be achieved through
the enforcement of some additional modelling constraints and transformations. A broad collection of
information related to OWL DLP can be found on [27].

Horn logic and description logics are orthogonal (in the sense that neither of them is a subset of the
other). DLP is the “intersection” of Horn logic and OWL; it is the Horn-definable part of OWL, or stated
another way, the OWL-definable part of Horn logic.

DLP has certain advantages:

 From modeller’s perspective, there is freedom to use either OWL or rules (and associated
tools and methodologies) for modelling purposes, depending on the modeller’s experience and
preferences.

 From implementation perspective, either description logic reasoners or deductive rule systems
can be used. Thus it is possible to model using one framework, for instance, OWL, and to use
a reasoning engine from the other framework, for instance, rules. This feature provides extra
flexibility and ensures interoperability with a variety of tools.

Experience with using OWL has shown that existing ontologies frequently use very few constructs
outside the DLP language.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 21

3.1.5.2 OWL Horst

In [37] ter Horst defines RDFS extensions towards rule support and describes a fragment of OWL,
more expressive than DLP. He introduces the notion of R-entailment of one (target) RDF graph from
another (source) RDF graph on the basis of a set of entailment rules R. R-entailment is more general
than the D-entailment used by Hayes, [18], in defining the standard RDFS semantics. Each rule has a
set of premises, which conjunctively define the body of the rule. The premises are “extended” RDF
statements, where variables can take any of the three positions.

The head of the rule comprises of one or more consequences, each of which is, again, an extended
RDF statement. The consequences may not contain free variables, i.e. which are not used in the body
of the rule. The consequences may contain blank nodes.

The extension of the R-entailment (as compared to the D-entailment) is that it “operates” on top of
the so-called generalized RDF graphs, where blank nodes can appear as predicates. R-entailment rules
without premises are used to declare axiomatic statements. Rules without consequences are used to
imply inconsistency.

In this document we refer to this extension of RDFS as “OWL Horst”. As outlined in [37], this
language has a number of important characteristics:

 It is a proper (backward-compatible) extension of RDFS. In contrast to OWL DLP, it puts no
constraints on the RDFS semantics. The widely discussed meta-classes (classes as instances
of other classes) are not disallowed in OWL Horst. It also does not enforce unique name
assumption;

 Unlike the DL-based rule languages, like SWRL, [20] and [25], R-entailment provides a
formalism for rule extensions without DL-related constraints;

 Its complexity is lower than the one of SWRL and other approaches combining DL ontologies
with rules; see section 5 of [37].

The “OWLIM” box covers the position on the map of the most complex OWL dialect supported by
OWLIM – the owl-max rule-set with its partialRDFS parameter set to false; see the OWLIM
User Guides for parameter description. The pre-defined rule sets in OWLIM do not support entailment
of typed literals (D-entailment); more details on the semantics supported by OWLIM can be found in
the Supported Semantics topic on page 33.

OWL Horst is close to what SWAD-Europe has intuitively described as OWL Tiny, [36]. The major
difference is that OWL Tiny (like the fragment supported by OWLIM) does not support entailment over
data types.

3.1.6 Querying Languages

In this section, we introduce some query languages for RDF. This may beg the question as to why we
need RDF-specific query languages at all instead of using an XML query language. The answer is that
XML is located at a lower level of abstraction than RDF. This fact would lead to complications if we
were querying RDF documents with an XML-based language. The RDF query languages explicitly
capture the RDF semantics in the language design itself.

All the querying languages discussed below have an SQL-like syntax, but there are also a few non-
SQL-like languages like Versa and Adenine.

The query languages supported by Sesame (which is the Java framework within which OWLIM
operates) and, therefore, by OWLIM, are SPARQL and SeRQL (see “SPARQL” and “SeRQL” below).

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 22

3.1.6.1.1 RQL, RDQL

RQL (RDF Query Language) has been initially developed by the Institute of Computer Science at in
Heraklion, Greece, in the context of the European IST project MESMUSES.3. RQL adopts the syntax of
OQL (a query language standard for object-oriented databases), and, like OQL, is defined by means of
a set of core queries, a set of basic filters, and a way to build new queries through functional
composition and iterators.

The core queries are the basic building blocks of RQL, which give access to the RDFS-specific contents
of an RDF triple store. RQL allows queries such as Class (retrieving all classes), Property
(retrieving all properties) or Employee (returning all instances of the class with name Employee).
This last query, of course, also returns all instances of subclasses of Employee, since these are also
instances of the class Employee, by virtue of the semantics of RDFS.

RDQL (RDF Data Query Language) is a query language for RDF first developed for Jena models. RDQL
is an implementation of the SquishQL RDF query language, which itself is derived from rdfDB. This
class of query languages regards RDF as triple data, without schema or ontology information unless
explicitly included in the RDF source.

Apart from Sesame, the following systems, too, currently provide RDQL1: Jena, RDFStore, PHP XML
Classes, 3Store, and RAP (RDF API for PHP).

3.1.6.1.2 SPARQL

SPARQL (pronounced “sparkle”) is currently the most popular RDF query language; its name is a
recursive acronym that stands for “SPARQL Protocol and RDF Query Language”. It was standardized
by the RDF Data Access Working Group (DAWG) of the World Wide Web Consortium, and is now
considered a key Semantic Web technology. On 15 January 2008, SPARQL became an official W3C
Recommendation.

SPARQL allows for a query to consist of triple patterns, conjunctions, disjunctions, and optional
patterns. Several SPARQL implementations for multiple programming languages exist at present.

3.1.6.1.3 SeRQL

SeRQL (Sesame RDF Query Language, pronounced “circle”) is an RDF/RDFS query language
developed by Sesame’s developer – Aduna – as part of Sesame. It selectively combines the features
considered by its creators to be the best of some other (query) languages (RQL, RDQL, N-Triples, N3)
and adds some features of its own. As of this writing, SeRQL provides advanced features not yet available

in SPARQL. Some of SeRQL’s most important features are:

 Graph transformation

 RDF Schema support

 XML Schema datatype support

 Expressive path expression syntax

 Optional path matching

1 All these implementations are known to derive from the original grammar.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 23

3.1.7 Reasoning Strategies

The two principle strategies for rule-based inference are forward-chaining and backward-chaining.

 Forward-chaining: to start from the known facts (the explicit statements) and to perform
inference in an inductive fashion. The goals of such reasoning can vary: to compute the
inferred closure; to answer a particular query; to infer a particular sort of knowledge (e.g. the
class taxonomy).

 Backward-chaining: to start from a particular fact or a query and to verify it or get all possible
results, using deductive reasoning. In a nutshell, the reasoner decomposes (or transforms)
the query (or the fact) into simpler (or alternative) facts, which are available in the KB or can
be proven through further recursive transformations.

Both of these strategies have different strong and weak points, which are studied well in the history of
KR and expert systems. Hybrid strategies (involving partial forward- and backward-chaining) are also
possible and proven to be efficient in many contexts.

Let us imagine a repository which performs total forward-chaining, i.e. it tries to make sure that, after
each update to the KB, the inferred closure is computed and made available for query evaluation or
retrieval. This strategy is generally known as materialization. In order to avoid ambiguity with various
partial materialization approaches, let us call such an inference strategy, taken together with the
monotonic entailment1 assumption, total materialization.

The principle advantages and disadvantages of the total materialization are discussed at length in [3];
here we provide just a short summary of them:

 Upload/store/addition of new facts is relatively slow, because the repository is extending the
inferred closure after each transaction for modification. In fact, all the reasoning is performed
during the upload;

 Deletion of facts is also slow, because the repository should remove from the inferred closure
all the facts which are not true any longer.

 The maintenance of the inferred closure usually requires considerable additional space (RAM,
disk, or both, depending on the implementation);

 Query and retrieval are fast, because no deduction, satisfiability checking, or other sorts of
reasoning are required. The evaluation of the queries becomes computationally comparable to
the same task for relation database management systems (RDBMS).

Probably the most important advantage of the inductive systems, based on total materialization, is
that they can easily benefit from RDBMS-like query optimization techniques, as long as all the data is
available at query time. The latter makes it possible for the query evaluation engine to use statistics
and other means in order to make "educated" guesses about the “cost” and the ”selectivity” of a
particular constraint. These optimizations are much more complex in the case of deductive query
evaluation.

Total materialization is adopted as reasoning strategy in a number of popular Semantic Web
repositories, including some of the standard configurations of Sesame and Jena. Based on publicly
available evaluation data, it is also the only strategy which allows scalable reasoning in the range of a

1 Under a monotonic logic, when new explicit facts (statements) are added to the KB (repository), this can cause
that new implicit facts can extend its inferred closure, but in no case facts which were part of the inferred closure
before, should be removed. In other words, addition of new facts can only monotonically extend the inferred
closure.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 24

billon of triples; such results are published by BBN (for DAML DB) and ORACLE (the RDF support in
ORACLE 11g).

3.1.8 Semantic Repositories

Over the last decade the Semantic Web emerged as an area where semantic repositories become as
important as the HTTP servers are today. This perspective boosted the development, under W3C
driven community processes, of a number of robust metadata and ontology standards. Those
standards play the role, which SQL had for the development and spread of the relational DBMS.
Although designed for Semantic Web, these standards face increasing acceptance in areas like
Enterprise Application Integration and life sciences.

In the OWLIM-speak (and, therefore, throughout this document), the term “semantic repository” is
used to refer to a system for storage, querying, and management of structured data with respect to
ontologies. At present, there is no single well-established term for such engines. Weak synonyms are:
reasoner, ontology server, metastore, semantic/triple/RDF store, database, repository, knowledge
base. The different wording usually reflects a somewhat different approach to implementation,
performance, intended application, etc.. Introducing the term “semantic repository”, we are trying to
cover the core functionality offered by most of these tools.

Semantic repositories can be used as a replacement for the database management systems (DBMS),
offering easier integration of diverse data and more analytical power. In a nutshell, a semantic
repository can dynamically interpret metadata schemata and ontologies, which define the structure
and the semantics related to the data and the queries. Compared to the approach taken in the
relational DBMS, this allows for easier changing and combining of data schemata and automated
interpretation of the data. The latter means that, for example, given a simple ontology, a semantic
repository can return a mobile operator in the UK, when queried for telecom companies in Europe.

3.2 Introduction to Sesame

Sesame is a system/framework for storing, querying and reasoning with RDF data. It is implemented
in Java by Aduna as an open source project and includes various storage back-ends (memory, file,
database), query languages, inferencers, and client-server protocols.

There are two uses of Sesame:

 as an RDF/RDFS database

 as a Java library for an application designed to work with RDF internally

Sesame enables you to parse, interpret, query and store this kind of structured information.
Depending on what your preference is, you can embed that information in your own application or in
a separate database (which can even reside on a remote server). In other words, Sesame provides
application developers with the functionality they need to process RDF.

Sesame supports the SPARQL RDF query language, which, as mentioned earlier, is the recommended
standard of the W3C, and SeRQL (Aduna’s own query language). It also supports most popular RDF
file formats and query result formats.

Sesame offers a JBDC-like user API, streamlined system APIs and a RESTful HTTP interface. Various
extensions are available or being under development by third parties.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 25

Currently in version 2.X, Sesame is completely targeted at Java 5. All APIs use Java 5 features such as
typed collections and iterators. Sesame version 2.1 added support for storing RDF data in relational
databases. The supported relational databases are MySQL, PostgreSQL, MS SQL Server, and Oracle.
As of version 2.2, Sesame also includes support for Mulgara (a native RDF database).

3.2.1 Sesame Architecture

A schematic representation of Sesame's architecture is shown in Figure 4. Following is a brief
overview of the main components.

Figure 4 - Sesame's architecture - a schematic representation

Sesame is independent of the actual DataBase Management System (DBMS) that stores the RDF data.
It has no DBMS of its own but interfaces to an outside DBMS through its Storage And Inference Layer
(SAIL). The SAIL is a single layer that carries all the necessary DBMS-specific code for Sesame. It is
an application programming interface (API) that offers RDF-specific methods to its clients and
translates these methods to calls to its specific DBMS.

Considering the large variety of DBMSs in existence, this is a very flexible solution allowing the RDF
data to be stored in numerous ways depending on the particular DBMS chosen and this choice can be
based on what the best approach for the particular application is.

Sesame’s functional modules are clients of the SAIL API. Currently, there are three such modules: the
Query module (which runs the RQL query engine), the RDF Admin module and the RDF Export
module.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 26

Depending on the environment in which it is deployed, different ways to communicate with the
Sesame modules may be desirable. For example, communication over HTTP may be preferable in a
Web context, but in other contexts, protocols such as Remote Method Invocation (RMI) or the Simple
Object Access Protocol (SOAP) (see [2]) may be more suited. In order to allow maximal flexibility, the
actual handling of these protocols has been placed outside the scope of the functional modules.
Instead, protocol handlers are provided as intermediaries between the modules and their clients, each
handling a specific protocol.

The use of the SAIL and the protocol handlers makes Sesame a generic architecture for RDFS storage
and querying, rather than just a particular implementation of such a system. Adding additional
protocol handlers makes it easy to connect Sesame to different operating environments. As a result,
Sesame's architecture is extensible and adaptable – it is possible to use various kinds of repositories
and to add additional modules or protocol handlers as well. [5]

3.2.2 The SAIL API

The SAIL API is a set of Java interfaces that has been specifically designed for storage and retrieval of
RDFS-based information. The main characteristic features of the SAIL are as follows:

 It is the basic interface for storing/retrieving/deleting RDF and RDFS to/from (persistent)
repositories.

 It abstracts from the actual storage mechanism: it could be applicable to RDBMSs, file
systems, or in-memory storage, for example.

 It can be used on low-end hardware like PDAs, but also offers enough freedom for
optimizations to handle huge amounts of data efficiently on e.g. enterprise-level database
clusters.

 It is extendable to other RDF-based languages like DAML+OIL.

 It is possible to put multiple SAILs on top of each other. The SAIL at the top can perform
some action when the modules make calls to it, and then forward these calls to the SAIL
beneath it. This process continues until one of the SAILs finally handles the actual retrieval
request, propagating the result back up again.

 It caches all schema data in a dedicated data structure in main memory. This is a good
solution because the schema data is often very limited in size and is requested very
frequently, while, at the same time, it is the most difficult to query from a DBMS because of
the transitivity of the subClassOf and subPropertyOf properties. (This schema-caching
SAIL can be placed on top of some other SAIL(s), handling all calls concerning schema data.
The rest of the calls are forwarded to the underlying SAIL.)

 It handles concurrency. Since any given RQL query is broken down into several operations on
the SAIL level, it is important to preserve repository consistency over multiple operations. The
SAIL selectively blocks and releases read and write access to repositories, on a first come first
serve basis. This setup allows for supporting concurrency control for any type of repository.

Other proposals for RDF APIs are currently under development. The most prominent of these are the
Jena toolkit and the Redland Application Framework. The SAIL shares many characteristics with both
approaches.

An important difference between these two proposals and SAIL, is that the SAIL API specifically deals
with RDFS on the retrieval side: it offers methods for querying class and property subsumption, and

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 27

domain and range restrictions. In contrast, both Jena and Redland focus exclusively on the RDF triple
set, leaving interpretation of these triples to the user application. In SAIL, these RDFS inferencing
tasks are handled internally. The main reason for this is that there is a strong relationship between
the efficiency of the inferencing and the actual storage model being used. Since any particular SAIL
implementation has a complete understanding of the storage model (e.g. the database schema in the
case of an RDBMS), this knowledge can be exploited to infer, for example, class subsumption more
efficiently.

Another difference between SAIL and other RDF APIs is that SAIL is considerably more lightweight:
only four basic interfaces are pre-defined, offering basic storage and retrieval functionality and
transaction support, but not much beyond that. The reason for this is that in some applications such
minimality may be preferable to an API that has more features, but is also more complex to
understand and implement.

The current Sesame system offers several implementations of the SAIL API. The most important of
these is the SQL92SAIL, which is a generic implementation for SQL92 [21]. This allows for connecting
to any RDBMS while having to re-implement as little as possible. In the SQL92SAIL, only the
definitions of the datatypes (which are not part of the SQL92 standard) have to be changed when
switching to a different database platform. The SQL92SAIL features an inferencing module for RDFS,
based on the RDFS entailment rules as specified in the RDF Model Theory [17]. This inferencing
module computes the schema closure of the RDFS being uploaded, and asserts these implicates of the
schema as derived statements. For example, whenever a statement of the form (foo, rdfs:domain,
bar) is encountered, the inferencing module asserts that (foo, rdf:type, property) is an implied
statement. The SQL92SAIL has been tested in use with several DBMSs, including PostgreSQL8 and
MySQL9. [5]

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 28

4 Introduction to OWLIM
OWLIM is a high-performance semantic repository, implemented in Java and packaged as a Storage
and Inference Layer (SAIL) for the Sesame RDF database. OWLIM is based on Ontotexts’s TRREE – a
native RDF rule-entailment engine. The supported semantics can be configured through rule-set
definition and selection. The most expressive pre-defined rule-set combines unconstrained RDFS and
OWL Lite. Custom rule-sets allow tuning for optimal performance and expressivity. OWLIM supports
RDFS (page 11), OWL DLP (page 20), OWL Horst (page 21), and most of OWL Lite (page 20).

The two major varieties of OWLIM are SwiftOWLIM and BigOWLIM. In SwiftOWLIM, reasoning and
query evaluation are performed in-memory, while, at the same time, a reliable persistence strategy
assures data preservation, consistency, and integrity. BigOWLIM is the “enterprise” variety: it deals
with data and indices directly from on-disc or other file storage, which allows for highly improved
scaling. In addition to that, BigOWLIM’s indices are specially designed to allow efficient query
evaluation against huge volumes of data. SwiftOWLIM can manage millions of explicit statements on
desktop hardware. On an entry-level server, BigOWLIM can handle billions of statements and serve
multiple simultaneous user sessions.

A principal limitation of the reasoning strategy adopted (forward-chaining) is the relatively slow delete
operation. Uploading, reasoning, and query evaluation proceed extremely fast even against huge
ontologies and knowledge bases. According to the limited evaluation data available, SwiftOWLIM is
the fastest OWL Lite repository available, while BigOWLIM is the most efficient repository with
reasoning support in the enterprise class.

The key differences between the editions of OWLIM are discussed in “OWLIM Editions” on page 32
and in the OWLIM presentation, [28]. The results form a number of benchmarks, as well as plenty of
other performance evaluation and analysis information, are provided in [29].

4.1 Advantages of OWLIM

One of the main advantages of OWLIM the in-memory reasoning implementation: the full content of
the repository is loaded and maintained in the main memory, which allows for efficient retrieval and
query answering. Although the reasoning is handled in-memory, the OWLIM SAIL offers a relatively
comprehensive persistency and backup strategy.

The persistency of OWLIM is implemented via N-Triples files. The repository can be split into several
files. All these files except one are read-only; the writable file is considered as both the source from
which the triples are loaded and the target where the new statements are stored. This backup
strategy ensures that no loss of newly asserted triples can occur in cases of power failure or abnormal
termination – the detailed description is presented in OWLIM User Guides. Although relatively simple,
this strategy had proven to be very efficient and reliable over the years during which the
RdfSchemaRepositoryV2 and OWLIM have been used as a semantic repository for different
applications of the KIM platform (for details, see [22]).

4.2 Limitations of OWLIM

The limitations of OWLIM are related to its reasoning strategy. In general, the expressivity of the
language supported cannot be extended in the direction of DL. The rule-engine behind OWLIM is

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 29

limited in expressivity by the Horn logic. The total materialization strategy has its obvious drawbacks,
as discussed briefly in “Reasoning Strategies” on page 23 and in detail in [4]. For specific ontologies
and KBs, the count of the implicit statements can appear to grow rapidly. What is even more
important, the delete operation is really slow, which means that OWLIM is not suitable for applications
where removal of data is a typical transaction. The most obvious disadvantage of the in-memory
reasoning is that the size of the KB which can be handled is limited by the size of the available RAM.1

4.3 OWLIM Interoperability and Architecture

This topic provides information on several technical aspects related to the interoperability, the design
and the behaviour of OWLIM.

The inference is performed by the TRREE engine (see [39]), which applies total materialization (see
“Reasoning Strategies” on page 23), i.e. it generates and caches the inferred closure – all implicit
statements which can be entailed from the current state of the repository, through the currently active
rule-set. The contents of the repository and the inferred closure are available in highly-optimized data
structures in-memory for query evaluation and further inference. The inferred closure is updated
(though inference) at the end of each transaction that modifies the repository.

Figure 5 - OWLIM Usage and Relations to Sesame and TRREE

OWLIM implements the SAIL interface of Sesame (refer to The SAIL API topic on page 26), so, it is
integrated with all the facilities of Sesame, e.g. the query engines and the web UI. A user application
can choose whether to use OWLIM directly, through the low-level SAIL interface, or through the
higher-level functional interfaces of Sesame (see “Introduction to Sesame” on page 24). Users can

1 Considering the currently available commodity hardware, OWLIM can handle millions of statements on desktop
machines and above ten millions on an almost-entry-level server.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 30

access the data stored in OWLIM through Sesame’s web user interface or through other tools
integrated with Sesame (for instance, ontology editors like Protégé and TopBraid Composer).

The easiest way to use OWLIM is in the so-called embedded mode, i.e. as a Java library. The
distribution of OWLIM contains a RMI factory (CustomFactory), that allows the applications to
access the SAIL layer of the repository over RMI. (Further details are provided in OWLIM User
Guides.) The installation and configuration of OWLIM are discussed in “Installation and Configuration
Overview” on page 37. More information on the various aspects of the Sesame specifications, its
architecture and implementations can be found in “Introduction to Sesame” on page 24.

4.3.1 Integration with Sesame

OWLIM is a specific configuration for the Sesame RDF database (see “Introduction to Sesame” on
page 24) and counts on it for various sorts of features and infrastructure, including, but not limited to,
an extensive set of RDF and query language parsers. The fact that Sesame is one of the most mature
and popular semantic repositories allows for easy adoption of OWLIM. SwiftOWLIM ver. 3 is packaged
as a Storage and Inference Layer (SAIL) for Sesame v.2.x named OWLIMSchemaRepository; it
implements the RdfSchemaRepository interface. More information related to various aspects of
Sesame’s specification, architecture, and implementations can be found in [41].

4.3.2 The TRREE Engine

The TRREE is OWLIM’s database engine. TRREE (see [39]) stands for “Triple Reasoning and Rule
Entailment Engine”. The TRREE performs reasoning based on forward-chaining of entailment rules
over RDF triple patterns with variables. TRREE’s reasoning strategy is total materialization, as
introduced in “Reasoning Strategies” on page 23. A departure from this strategy can be implemented
in case of the so called “transitivity optimization” (see “Transitivity Optimization” on page 31).

4.3.2.1 Rule Format and Semantics

The rule format and the semantics enforced is analogous to R-entailment (see [37] and the Reasoning
Strategies topic on page 23) with the following differences:

 Free variables in the head (without binding in the body) are treated as blank nodes. This
feature can be considered “syntactic sugar”.

 Variable inequality constraints can be specified in the body of the rules, in addition to the
triple patterns. This leads to lower complexity as compared to R-entailment.

 the [cut] operator can be associated with rule premises, the TRREE compiler interprets
it like the ! operator in Prolog.

 Inconsistency rules are not supported, i.e. there is no specific mechanism to allow
inconsistency checks. One can easily model these via regular rules which entail <X,
rdf:type, owl:Nothing> statements, without affecting the complexity class;

 Axioms can be provided as a set of statements, although those are not modelled as rules
with empty bodies.

The TRREE can be configured via “rule-sets” – sets of axiomatic triples and entailment rules, which
determine the supported semantics. The implementation of TRREE relies on a compile stage, during
which the rules are compiled into chunks of Java code that are post-processed and merged together
to generate the main entry point for the inferencer.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 31

The edition of TRREE used in SwiftOWLIM is referred to as “SwiftTRREE” and performs reasoning and
query evaluation in-memory; the latter means that the full content of the repository is loaded and
maintained in a proprietary representation in the main memory, which allows for rapid reasoning and
retrieval. The TRREE edition used in BigOWLIM operates with data and index structures from a file
storage. Its data structures are organized to allow query optimizations which improve the query
evaluation performance with respect to big datasets dramatically, for instance on one standard tests
BigOWLIM evaluates queries against 7 million statements three times faster than SwiftOWLIM,
although it takes it two-three times more time to initially load the data.

4.3.2.2 The Rule Language

This language is almost identical with the R-Entailment defined by Horst; the major difference is that
at present the TRREE provides no support of the R-Entailment's axiomatic triples and inconsistency
rules.

A rule-set file can have up to three sections named Prefices, Axioms, and Rules. The Rules
section is mandatory; when the other sections exists, the sections must appear sequentially in the
order in which they are listed here.

 The Prefices section defines the common namespaces.

 The Axioms section defines a set of axiomatic triples to be asserted by default into
repository. These triples are usually used to describe the meta-level primitives used to define
the schema, such as rdf:type, rdfs:Class, etc..

 The Rules section provides all rule definitions. Each definition consists of premises and
corollaries that are RDF statements defined via a subject, predicate and object components.
Any component can be a variable, a full URI or the short name for the URI. Constraints, too,
can be used to state that the values of the variables in a statement must not be equal to
some specific full URI (or its short name) or to the value of another variable within the same
rule.

4.3.2.3 Transitivity Optimization

The language of the TRREE allows for entering of either single-line or multiple-line comments
wherever necessary. The TRREE1 can operate in a special mode, in which it does not materialize
implicit statements, inferred as “closure” of transitive, symmetric, or inverse properties2. In this mode,
two of the rules related to the support of owl:TransitiveProperty, owl:inverseOf are
skipped; “local” backward-chaining is used in their place to provide equivalent entailments without
materialization. Following are the two rules which are searched for in the rule-set and omitted in this
mode:

Id: owl_invOf
 x p y
 p <owl:inverseOf> q

 y q x

Id: proton_TransitiveOver
 p <protons:transitiveOver> q

1 This transitivity optimization appears first in SwiftTRREE version 2.9.

2 This mode is activated with the transitive parameter of OWLIM.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 32

 x p y
 y q z

 x p z

Inference and query answering is slower in this mode (as compared with the ‘normal’ one,
performing total materialization) since it effectively implements partial backward-chaining, which
requires additional calculations and as well as maintenance of intermediate data structures. This
strategy pays off in cases when long chains of resources are related through transitive properties. The
inferred closure of such chain of n resources (connect through n-1 explicit statements) contains n(n-
1)/2 statements. In other words, the inferred closure grows in polynomial (quadratic) dependence on
the length of the chain. The situation gets even worse when the transitive property is also symmetric
or has an inverse one, as, the inferred closure of such chain doubles in size.

4.4 OWLIM Editions

OWLIM comes in two major OWLIM editions – SwiftOWLIM and BigOWLIM – and, additionally, in two
versions depending on the supported version of Sesame.

4.4.1 SwiftOWLIM and BigOWLIM

The two major OWLIM editions – SwiftOWLIM and BigOWLIM – are identical in terms of usage and
integration except for some minor differences in a few configuration parameters. The editions differ in
the respective version of the TRREE engine they are based upon, but share the same inference and
semantics (rule-compiler, etc.).

SwiftOWLIM is designed for medium data volumes and prototyping. Its key features are:

 reasoning and query evaluation performed in the main memory, so it keeps the major
part of its indices there

 persistence strategy that assures data preservation and consistency

 extremely fast loading of data (including inference and storage)

BigOWLIM is suitable for massive volumes of data and heavy query loads. It is designed as an
enterprise-grade database management system. It features:

 file-based indices (Enables it to scale to billions of statements even on desktop machines.)

 query optimizations (Ensures fast query evaluations.)

 optimized handling of owl:sameAs (identifier equality) (Boosts its efficiency for data
integration tasks.)

Parameter SwiftOWLIM BigOWLIM

Scale
(Mill. of explicit St.)

10 MSt, using 1.6 GB RAM
100 MSt, using 16 GB RAM

130 MSt, using 1.6GB
1068 MSt, using 12GB

Processing speed
(load+infer+store)

30 KSt/s on notebook
200 KSt/s on server

5 KSt/s on notebook
60 KSt/s on server

Query optimization No Yes

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 33

SwiftOWLIM BigOWLIM Parameter

Persistence Back-up in N-Triples Binary data files and indices

Efficient owl:sameAs No Yes

Licence and
Availability

Open-source under LGPL;
Uses SwiftTRREE that is free,
but not open-source

Commercial.
Research and evaluation copies
provided for free

Table 2 - Comparison between SwiftOWLIM and BigOWLIM

4.4.2 Versioning of OWLIM

OWLIM’s versions are designed and tailored to meet as efficiently as possible the wide range of
requirements towards RDF databases and reasoning engines. The following table summarizes the
major differences between the versions that are currently supported.

Feature

OWLIM Edition and
version number

Sesame
version

SPARQL
support

Instant
initializ.

owl:sameAs
optimization

Comment

SwiftOWLIM 2.9.x 1.2.x – – –

The fastest OWL
database. Multi-
threaded inference,
with transitive
inference
optimization.

BigOWLIM 2.x 1.2.x – yes yes

Optimal performance
and scalability. The
fastest query
evaluation. Successor
of 0.9.x.

SwiftOWLIM 3.x 2.x.x yes yes –
The fastest RDF
machine with NG and
SPARQL support.

BigOWLIM 3.x 2.x.x yes yes yes
Ultimate scalability
and fast SPARQL
evaluation.

Table 3 - Comparison table of all OWLIM versions

4.5 Supported Semantics

OWLIM offers several predefined levels of entailment but allows also for customization of the
supported semantics. The particular semantics to be used is specified (through the ruleset
parameter, see the Configuration topic in the User Guide) for each specific repository instance.
Applications, which do not need the complexity of the most expressive supported semantics, can

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 34

choose one of the lower levels, which will result in faster inference. The division of the rules into the
different complexity levels is clearly indicated (through comments) in the rules.pie file.

The semantics supported by OWLIM is highly configurable – the TRREE engine can be configured to
work with not only with any of the several pre-defined rule-sets but also with a rule-set defined by the
user. The complexity, and thus the speed, of the inference can vary considerably across different rule-
sets.

4.5.1 Pre-Defined Rule Sets

The pre-defined rule-sets are “nested” into each other so that each one is extending the preceeding
one ; following is a list ordered by increasing complexity:

 empty: no reasoning, i.e. OWLIM operates as a plain RDF store;

 rdfs: supports the standard theoretic RDFS semantics model;

 owl-horst: OWL dialect close to OWL Horst; the differences are discussed in “OWL
Compliance” below.

 owl-max: a combination of most of the semantics of OWL Lite in combination with full
compatibility with (support for) RDFS.

Additional variety of the supported level of semantics can be brought in through the so-called
partialRDFS modification of the predefined rule-sets. It is discussed in OWLIM User Guides. Define
custom rule-sets is always an option, as described in “Creating Custom Configurations” on page 38.
The rule-set to be used for a specific repository is defined through the ruleset parameter (For
details, refer to OWLIM User Guides).

The richest rule-set (owl-max) encompasses the model theoretic semantics of RDFS, as defined in
[18], extended with support for most of the OWL primitives as explained in the OWL Compliance topic
below. There are certain limitations to the support of these primitives. They are discussed in OWLIM
User Guides.

4.5.2 OWL Compliance

Regarding OWL compliance, OWLIM supports a dialect (rule-set owl-horst) similar to OWL Horst, as
defined in [37] and introduced in “OWL Horst” on page 21. The OWLIM support of OWL with the
owl-max rule-set and without partialRDFS optimizations is as follows:

 OWLIM supports the full RDFS semantics without constraints or limitations, apart from the
entailments related to typed literals (known as D-entailment). For instance, meta-classes (and
any arbitrary mixture of class, property, and individual) can be combined with the supported
OWL semantics.

 The supported OWL semantics does not cover the full OWL Lite. The OWL semantics
supported by OWLIM, combined with unconstrained RDFS semantics, constitutes a language
which is not comparable to OWL Lite – its full compatibility with RDFS makes it more
expressive than OWL Lite in some aspects.

 OWLIM supports a language richer than OWL DLP;

The differences between OWL Horst, [37], and the OWL dialects supported by OWLIM through owl-
horst and owl-max rule-sets can be summarized as follows:

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 35

 OWLIM does not provide the extended support for typed literals, introduced with the D*-

entailment extension of the RDFS semantics. Although such support is conceptually clear
and easy to implement, it is our understanding that the performance “penalty” is too high
for most applications. One can easily implement adapt the rules defined for this purpose
by ter Horst and put them in a customized rule-set (see “Custom Rule-Sets” on page 35
and OWLIM User Guides).

 There are no inconsistency rules.

 Few more OWL primitives are supported by OWLIM (rule-set owl-max). These are listed
in OWLIM User Guides.

 There is extended support for schema-level (T-Box) reasoning in OWLIM.

Even though the concrete rules pre-defined in OWLIM differ from those defined in OWL Horst in [37],
the complexity and decidability results reported for R-entailment are relevant for TRREE and OWLIM.
Put it more precisely, the rules in the owl-host rule-set, do not introduce new B-Nodes, which
means that R-entailment with respect to them takes polynomial time. In KR terms, this means that
the owl-horst inference within OWLIM is tractable.

OWLIM implements reasoning with lesser complexity, as compared to other formalisms, which
combine DL ontologies with rules. In addition, it puts no constraints with respect to meta-modelling.

The correctness of the support of the OWL semantics (for those primitives which are supported) is
checked against the normative Positive and Negative-entailment OWL test cases, [7]. These checks
are available as JUnit tests together with the OWLIM distribution; they are documented in [29] and
can also be used as sample applications.

4.5.3 PROTON Primitives

Besides the RDF- and OWL-specific primitives, the rules, predefined in OWLIM, provide semantics for
primitives from the PROTON ontology, [31]. The most important example is the rule that supports
transitiveOver property, which is defined as follows:

Id: proton_TransitiveOver
 p <protons:transitiveOver> q
 x p y
 y q z

 x p z

This property is used later on for alternative definition of the semantics of some RDFS primitives.
These definitions support semantics, equivalent to the one given, for instance, with the normative
axioms and rules in [18], but allow for better inference speed. They have no “side-effects” on the
entailment, unless the corresponding PROTON properties are being used by the application.
transitiveOver is also used for definition of the semantics of some of the OWL primitives.

The rules supporting the semantics of the PROTON primitives are clearly marked in the rules.pie
file.

4.5.4 Custom Rule-Sets

OWLIM has an internal rule compiler that could be used to configure the TRREE with a custom set of
inference rules and axioms. The user may define a proprietary rule-set in a *.pie file (e.g.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 36

MySemantics.pie). The easiest way to come up with your own rule-set is to start modifying one of the
.pie files that were used to build the precompiled rule-sets. (All pre-defined *.pie files are included in
the distribution.) The syntax of the .pie files is easy to follow; the rule-sets utilize Java syntax.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 37

5 Installation and Configuration Overview
OWLIM is a specific plug-in (namely, a storage and inference layer, SAIL) for Sesame. To configure,
run, and use OWLIM means to do so for a specific configuration of Sesame. Please, refer to the online
documentation of Sesame, [41]. Instructions and samples of how an application uses Sesame in
embedded mode can be found there, too.

As different versions of OWLIM are compliant with different versions of Sesame, code and
configuration files samples are not provided here but in OWLIM User Guides.

5.1 Contents of the Distribution Package

There are minor differences between the distributions of the different version of OWLIM – those are
commented accordingly in the OWLIM User Guides.

Licensing information about the corresponding version of OWLIM and Sesame can be found in files
licence.txt and licence_sesame.txt, respectively, in the main folder of the distribution. The
distributions of OWLIM include also:

lib folder The binary executable version of OWLIM as a JAR (Java library) files.

ext folder All required third party libraries are placed there for user’s convenience. The libraries
of the corresponding version of Sesame could be downloaded separately from
http://www.openrdf.org/. The folder also contains a copy of Leigh University
Benchmark library (lubm.jar) and also JUnit v3.8.1. They are needed for the execution
of the respective tests.

doc folder OWLIM user documentation including this document and tests documentation.

src folder The Java sources of OWLIM and the RMI factory.

test folder Contains sources, data, and documentation of the unit tests and benchmarks,
documented in [29].

standalone A folder with the scripts for running OWLIM as a standalone server enabled for RMI
access.

*.pie files Contain description of the built-in rule-sets.

getting-started folder
A folder with a an example setup for an application using OWLIM, with all required
auxiliary files and folders. Can be used as a template for creating custom OWLIM
configurations.

wordnet A folder with copy of the getting-started template customized for loading the
RDF/OWL representation of WordNet 2.0 and performing a set of queries against it.

setvars script (.cmd or .sh, respectively for Windows or Linux): a batch file defining several
environment variables used by the scripts that run the test cases and the getting-
started application. It should be customized for each individual installation as it
determines the Java machine to be started and the path to all the JAR files used
including those of OWLIM and Sesame.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

http://www.openrdf.org/

OWLIM Primer Page 38

5.2 How to Get Started Quickly

OWLIM comes equipped with an example application setup (the getting-started folder, see the
Contents of the Distribution Package topic above), which can be used as a template for bootstrapping
applications that use OWLIM. The sample code of this application performs a sequence of typical
operations: initialization of the repository, loading a KB into it, performing queries and obtaining
results, and making modifications. This application template comes packed with:

 source code and compiled class files

 sample ontology and data files

 Sesame configuration file

 scripts which invoke the application

One easy way for setting up an application using OWLIM is to copy the getting-started folder
and modify the contents as necessary. The easiest way to learn how to use it is to read the source
code of the GettingStarted class, located in the src folder; the code is commented extensively.
The configuration parameters are in the owlim.properties file in getting-started folder;
these parameters can be changed easily. For details on the configuration parameters and how the
sample application operates, refer to OWLIM User Guides.

5.3 Creating Custom Configurations

There are three main ways to create a custom configuration:

 You can change the semantic repository you operate on.

 You can change the query language.

 You can modify the rule-set, either partially (by adding, removing, or modifying statements)
or completely (including changing the ontology language and the inference logic).

Further details on this subject are available in OWLIM User Guides.

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 39

6 Glossary of Terms

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

OWLIM Primer Page 40

7 References

[1] BERGMANN, F. Introduction to Description Logics. Web page,
http://www.fraber.de/sitec/dl.html

[2] BOX, D; EHNEBUSKE, D; KAKIVAYA, G; LAYMAN, A; MENDELSOHN, N; NIELSEN, H F; THATTE, S; WINER, D.
Simple Object Access Protocol (SOAP) 1.1, W3c note, World Wide Web Consortium, May
2000
http://www.w3.org/TR/SOAP/

[3] BRICKLEY, D., GUHA, R.V; (eds.). Resource Description Framework (RDF) Schemas, W3C
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/

[4] BROEKSTRA, J. Storage, Querying and Inferencing for Semantic Web Languages. Ph.D.
thesis, SIKS Dissertation Series No. 2005-09, ISBN 90 9019 2360, Vrije Universiteit Amsterdam.
2005.
http://www.cs.vu.nl/~jbroeks/#pub

[5] BROEKSTRA, J; Kampman, A; van Harmelen, F. Sesame: A Generic Architecture for Storing
and Querying RDF and RDF Schema. International Semantic Web Conference, Sardinia,
Italy, 2002.

[6] CARROLL, J J; BIZER, C; HAYES, P; STICKLER, P. Named Graphs, Provenance and Trust.
International Semantic Web Conference, Hiroshima, Japan, 2004.

[7] CARROLL, J. J; DE ROO, J. OWL Web Ontology Language: Test Cases. W3C Recommendation
10 Feb. 2004.
http://www.w3.org/TR/owl-test/

[8] DEAN, M; SCHREIBER, G; (eds.); BECHHOFER, S; VAN HARMELEN, F; HENDLER, J; HORROCKS, I;
MCGUINNESS, D L; PATEL-SCHNEIDER, P F; STEIN, L A. OWL Web Ontology Language
Reference. W3C Recommendation. 10 Feb. 2004.
http://www.w3.org/TR/owl-ref/

[9] Dublin Core Metadata Element Set, Version 1.1.
http://dublincore.org/documents/dces/

[10] Dublin Core Metadata Element Set, Version 1.1: Reference Description.
http://dublincore.org/documents/2003/06/02/dces/

[11] EHRIG, M; HAASE, P; HEFKE, M; STOJANOVIC, N. Similarity for ontologies — a Comprehensive
Framework. Proc. 13th European Conference on Information Systems, May 2005.

[12] GROSOF, B; HORROCKS, I; VOLZ, R; DECKER, S. Description Logic Programs: Combining Logic
Programs with Description Logic. In Proc. of WWW2003, Budapest, May 2003.

[13] GRUBER, T R. A translation approach to portable ontologies. Knowledge Acquisition,
5(2):199-220, 1993.
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html

[14] GRUBER, T R. Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. Presented at the Padua workshop on Formal Ontology. March 1993, later published
in International Journal of Human-Computer Studies, Vol. 43, Issues 4-5, Nov. 1995, pp. 907-
928.
http://tomgruber.org/writing/onto-design.htm

[15] GUARINO, N; GIARETTA, P. Ontologies and Knowledge Bases: Towards a Terminological
Clarification. In N. Mars (ed.) Towards Very Large Knowledge Bases: Knowledge Building and
Knowledge Sharing. IOS Press, Amsterdam: pp. 25-32. 1995

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

http://www.fraber.de/sitec/dl.html
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://www.cs.vu.nl/~jbroeks/#pub
http://www.w3.org/TR/owl-test/
http://www.w3.org/TR/owl-ref/
http://dublincore.org/documents/dces/
http://dublincore.org/documents/2003/06/02/dces/
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html
http://tomgruber.org/writing/onto-design.htm

OWLIM Primer Page 41

[16] GUARINO, N. Formal Ontology in Information Systems. Proceedings of FOIS’98, Trento, Italy,

June 6-8, 1998. Amsterdam, IOS Press.
http://www.loa-cnr.it/Papers/FOIS98.pdf

[17] HAYES, P. RDF Model Theory. Working draft, World Wide Web Consortium. September 2001.
http://www.w3.org/TR/rdf-mt/

[18] HAYES, P. RDF Semantics. W3C Recommendation. Feb. 10, 2004.
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

[19] HILLMANN, D.; Using Dublin Core; DCMI Recommended Resource. NOV. 7, 2005

[20] HORROCKS, I. PATEL-SCHNEIDER, P F, BECHHOFER, S, TSARKOV, D. OWL Rules: A Proposal and
Prototype Implementation. Journal of Web Semantics, 3 (2005), pp. 23-40.

[21] ISO. Information Technology-Database Language SQL. Standard No. ISO/IEC 9075:1999,
International Organization for Standardization (ISO), 1999. (Available from American National
Standards Institute, New York, NY 10036, (212) 642-4900.).

[22] KIM. Home page,
http://www.ontotext.com/kim

[23] KIRYAKOV, A. Ontologies for Knowledge Management, Chapter 7 in: Davies, J; Studer, R;
Warren, P. (eds.). Semantic Web Technologies: Trends and Research in Ontology-based
Systems. Wiley, UK, 2006.

[24] KLYNE, G; CARROL , J. J; (eds). (2004). Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C Recommendation 10 Feb. 2004.
http://www.w3.org/TR/rdf-concepts/

[25] MOTIK, B; SATTLER, U; STUDER R. Query Answering for OWL-DL with Rules. Journal of Web
Semantics, issue 3 (2005), pp. 41-60.

[26] Named Graphs. W3C Overview.
http://www.w3.org/2004/03/trix/

[27] Ontology Logic and Reasoning at Semantic Karlsruhe. Home page,
http://logic.aifb.uni-karlsruhe.de/

[28] OWLIM – Pragmatic OWL Semantic Repository. Presentation slides, Ontotext AD, 2008
http://www.ontotext.com/owlim/OWLIMPres.pdf

[29] OWLIM Tests and Benchmarks. Ontotext Lab. 2007.
http://www.ontotext.com/owlim/v2.9.0/doc/OWLIMTest.pdf

[30] Popov, B; Kiryakov, A; Kirilov, A; Manov, D; Ognyanoff, D; Goranov, M. KIM – Semantic
Annotation Platform. In The Semantic Web - ISWC 2003, Sanibel Island, USA, 2003.

[31] PROTON Ontology (PROTo Ontology). Home page.
http://proton.semanticweb.org/

[32] RDF Primer. In W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-primer/

[33] RDF/XML Syntax Specification (Revised). In W3C Recommendation, 10 February 2004.
 http://www.w3.org/TR/rdf-syntax-grammar/

[34] Resource Description Framework (RDF): Concepts and Abstract Syntax, section Graph
Data Model. In W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-concepts/#section-data-model

[35] Semantic Knowledge Technologies (SEKT). Home page.
http://www.sekt-project.com/

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

http://www.loa-cnr.it/Papers/FOIS98.pdf
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.ontotext.com/kim
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/2004/03/trix/
http://logic.aifb.uni-karlsruhe.de/
http://www.ontotext.com/owlim/OWLIMPres.pdf
http://www.ontotext.com/owlim/v2.9.0/doc/OWLIMTest.pdf
http://proton.semanticweb.org/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-concepts/#section-data-model
http://www.sekt-project.com/

OWLIM Primer Page 42

© Copyright 2009, Ontotext Lab, Sirma Group Corp.

[36] SWAD-Europe Workshop on Semantic Web Storage and Retrieval. Amsterdam, Holland,
November 2003.
http://www.w3.org/2001/sw/Europe/reports/dev_workshop_report_4/#owl-tiny.

[37] TER HORST, H J. Combining RDF and Part of OWL with Rules: Semantics, Decidability,
Complexity. In Proc. of ISWC 2005, Galway, Ireland, Nov. 6-10, 2005. LNCS 3729, pp. 668-
684.

[38] TERZIEV, I; KIRYAKOV, A. PROTo ONtology: A Base Upper-Level Ontology for the Semantic
Web, SEKT Q4 Meeting. Innsbruck, Austria., Jan. 17-19, 2005.
http://proton.semanticweb.org/PROTON.ppt

[39] TRREE – Triple Reasoning and Rule Entailment Engine. Home page.
http://ontotext.com/trree/

[40] Uniform Resource Identifier, Wikipedia.
http://en.wikipedia.org/wiki/URI

[41] User Guide of Sesame. Aduna b. v..
http://www.openrdf.org/doc/sesame/users/index.html

http://www.w3.org/2001/sw/Europe/reports/dev_workshop_report_4/#owl-tiny
http://proton.semanticweb.org/PROTON.ppt
http://ontotext.com/trree/
http://en.wikipedia.org/wiki/URI
http://www.openrdf.org/doc/sesame/users/index.html

	1 Foreword
	2 About This Document
	2.1 OWLIM User Documentation – Overview
	2.2 Purpose, Intended Readership and Overview, of This Document
	2.3 How to Use This Document?
	2.4 Credits and Licensing

	3 Background Knowledge
	3.1 Introduction to Semantic Web Knowledge Management Concepts
	3.1.1 Resource Description Framework (RDF)
	3.1.1.1 Uniform Resource Identifiers (URIs)
	3.1.1.2 Statements – Object-Attribute-Value Triples
	3.1.1.3 Properties
	3.1.1.4 Named Graphs

	3.1.2 RDF Schema (RDFS)
	3.1.2.1 Describing Classes
	3.1.2.2 Describing Properties
	3.1.2.3 Sharing Vocabularies
	3.1.2.4 Dublin Core Metadata Initiative

	3.1.3 Ontologies and Knowledge Bases
	3.1.3.1 Classification of Ontlologies
	3.1.3.2 Knowlegde Bases
	3.1.3.2.1 PROTON

	3.1.4 Logic, Inference, and Ontology Languages
	3.1.4.1 Logical Programming
	3.1.4.2 Predicate Logic
	3.1.4.3 Description Logic

	3.1.5 Web Ontology Language (OWL) and Its Dialects
	3.1.5.1 OWL DLP
	3.1.5.2 OWL Horst

	3.1.6 Querying Languages
	3.1.6.1.1 RQL, RDQL
	3.1.6.1.2 SPARQL
	3.1.6.1.3 SeRQL

	3.1.7 Reasoning Strategies
	3.1.8 Semantic Repositories

	3.2 Introduction to Sesame
	3.2.1 Sesame Architecture
	3.2.2 The SAIL API

	4 Introduction to OWLIM
	4.1 Advantages of OWLIM
	4.2 Limitations of OWLIM
	4.3 OWLIM Interoperability and Architecture
	4.3.1 Integration with Sesame
	4.3.2 The TRREE Engine
	4.3.2.1 Rule Format and Semantics
	4.3.2.2 The Rule Language
	4.3.2.3 Transitivity Optimization

	4.4 OWLIM Editions
	4.4.1 SwiftOWLIM and BigOWLIM
	4.4.2 Versioning of OWLIM

	4.5 Supported Semantics
	4.5.1 Pre-Defined Rule Sets
	4.5.2 OWL Compliance
	4.5.3 PROTON Primitives
	4.5.4 Custom Rule-Sets

	5 Installation and Configuration Overview
	5.1 Contents of the Distribution Package
	5.2 How to Get Started Quickly
	5.3 Creating Custom Configurations

	6 Glossary of Terms
	7 References

